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-potentially to account for the often large observed discrepancies 0(10-20 db)
in the back-scattering cross sections between conventional theory and
experiment when high frequencies 0(310 kHz) and small grazing angles 0(5-20°)
are employed, without the assumption of near-surface bubble mechanisms. This .
is particularly important for the frequent situations when bubbles are demon-
strably lacking, even at mean wind speeds up to 0(10 m/sec = 20 knots), and
possibly higher. Here, the "capillary" component of the gravity-capillary
wave continuum is not large enough by itself to provide sufficient Bragg
scatter, while the soliton-ripples appear capable of so doing. Of course,

if near-surface bubbles are verified to be present in sufficient numbers,
they by themselves, or with the soliton-ripples, can account for the
noticeably larger (back )scatter cross sections obtained experimentally._

New features of the present study are: (1) identification of the
soliton-ripple phenomenon with its second-order statistical properties, e.g.,
¢orrelation functions and wave number spectra, as a significant potential
scattering mechanism; (2) development of a truly two-component wave surface
model employing these ripples, and (3) determination of the resulting mono-
and bi-static ?acoustic) cross sections, for both incoherent and coherent
scatter; (4) verification of general agreement between various analytic
procedures and their results, which indicates that the problem of recon-
ciliation between the observed data and calculated results (in the afore-
mentioned cases of high-frequency, small grazing angles) lies in the choice
of the physical model, which becomes particularly critical when there are
no (or negligible) bubbles. (5) We note, also, that the contributions of
diffraction are ignorable vis-a-vis the direct scatter terms of the
(necessarily approximate) theory used above to obtain the scatter cross
sections. A specific numerical example (20 kHz, 10 m/sec average wind,
and 10° grazing angle) is used for numericai results and comparisons with
previous approaches. Here gaussian and gaussian and omni-beam patterns are
explicitly employed, and the quantitative role of the various approximations
is extensively explored. A homogeneous Helmholtz medium is assumed, with
absorbtion and no gradients (vc = 0). The wind-wave surface is postu]ated
to be locally stationary and homogeneous.

Finally, we stress that at this stage the soliton-ripple scattering
mechanism, while promising, has not yet been established as such experi-
mentally: its existence is not questioned, but its scattering properties
remain to be verified.
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$:1 ACQUSTIC SCATTERING CROSS-SECTIONS FOR
i?_'} TRULY COMPOSITE WIND-WAVE SURFACES:
j:j SCATTERING WITHOUT BUBBLES*
o
LN David Middleton**
Y
*::"
2
o 1. _Introduction
i\‘~ ' The study of scattering from random rough surfaces and in particu-
E%: lar here, acoustic scattering from moving random, wind-generated wave
T:;E surfaces, is a venerable subject [1]-[4], [6], [7]-[13], which is of
O continuing interest and importance. This is true scientifically, be-
.__ cause of both amalytical and physical problems. The former center
;;; around methods of approximation needed for explicit theoretical results; ‘
:g; the latter, in choosing physical models appropriate to the wave-surface
AN in question. Scattering from such surfaces is also of critical concern
{ in applications, where reverberation is often a controlling factor,
f%ﬁ including under-ice, ocean surface, bottom and similar active underwater
fi; acoustic environments. Analogous problems and applications arise in the
s scattering of electromagnetic waves from the atmosphere-ocean interface.
f Here we are concerned primarily with determining the intensity of
_:: underwater acoustic radiation scattered from random moving wave surfaces.
ﬁ; In particular, our first aim is to derive explicit relations for the
Eﬁi coherent and incoherent (acoustic) scattering cross-sections for such
Y surfaces, by somewhat different procedures and assumptions from those
-};: used in previous work. Both mono- and bi-static cross-sections are
e, included.
% E Our second goal is to construct a surface wave model which, when
> applied to our cross-sectional results, has the potential for explaining
Y
Eﬁi *Work supported under contracts with Naval tnderwater Systems Center,
ﬁ:: New London, Conn., 1983, Contract N0O0140-83-M-NA11 (1983), and in part
Ct under Contracts N00140-83-C-KA23, and NO0140-84-M-1739 (1983, 1984).
o **Contractor, Physics and Applied Mathematics, 127 E. 91 St., New
a5 York, NY 10128.
3
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N

;EE} the discrepancies between theory and experiment in the important régimes in-
(t volving backscattering at high frequencies and small grazing angles [1]-[4],
N without recourse to a bubble mechanism [1]-[4].

{;% Here the dominant scatter contribution is no longer provided by the

%:fj specular-point (or "facet") scatter [5], but by the small-scale surface com-
a ponents (e.g., Bragg scatter), which now strongly dominates the former, pro-
g;a vided, of course, that there is an adequate small-scale component in the first
l:i: place. This second aim is stimulated by the fact that backscatter data ex-
- hibiting the above discrepancies can occur without bubbles [6], [7]. It is
A also encouraged by the additional observation that in most of the earlier re-
‘;u} ported data [1], [3], [4] there appears to be no quantitative verification

j:j of the presence (or absence) of near-surface bubble layers, sufficient to

i;ﬁ account for the noted discrepancy. In addition, the empirical scatter data
:*j vary with (input signal) frequency in a way not adequately predicted by ear-
. lier theoretical models. Furthermore, comparisons of (above-surface) radar
Eiiﬁ and (below-surface) acoustic (backscatter) data [4] are not really convincing,
”:j' because they were obtained for different oceans (at different times), and with

“atew
« "0 e

l'-

unknown or inadequate "ground-truth": for example, without simultaneous deter-
mination of bubble densities beiow the surface and above-surface water droplet

¥

SJ? populations, which latter can noticeably affect refraction and the scatter
fff intensity.

-i:i In short, we consider it reasonable to state that, at the least, bubble
2 mechanisms are not necessarily the explanation of the aforementioned dis-
'&;E crepancies between theory and observation (particularly in the absence of

xi?j bubbles!). In fact, there is evidence for a wave surface mechanism which can

o possibly account for the observed scatter levels (at high frequencies and

small grazing angles), within the generally available theoretical methods
jjj employed earlier, and withk the generalizations employed here. The postulated
jli- scattering mechanism (suggested by R. H. Mellen [14]) is the ensemble of soli-
ton-ripples [cf. Sec. 2.1 ff.]. These are generated by the near-surface wind
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impinging on the (irregular) gravity-capillary wave surface, upon which ride
ﬁ;} the soliton-ripples. (These solitons are found to be the limiting solution
2f of the Korteweg-de Vries equation and are discussed in some detail by Light-
;52 hill [16], see also [47].) "Solitons," here "hydraulic jumps," are, among
"' other things, characterized by the fact that they preserve their shape and
o speed [16]; [47]; Sec. III. Preliminary investigations [17]-[21] suggest
;:j that these hydraulic jumps not only embody the non-linear mechanisms
:-I;.':
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whereby the wave surface itself can be generated by the wind, but

may also be sufficiently large to produce the observed scattering

levels. What we have here is a truly two-component surface: the soliton
ripples ride upon the gravity-capillary wave surface which is their
(quasi)-equilibrium result. Unlike the latter, these ripples* are non-
dispersive and essentially move down-wind locally, and travel with the same
velocity 0(0.4 m/sec, [15], [47]). For acoustic and electromagnetic analyses
of two- (or more-) component surfaces, see [2], [4], [21]-[26], [29].

The usual difficulties with the theory arise in the inevitable
approximations: the Tangent-Plane or Kirchoff approach used for the
(moving) large-scale wave surface components [34], and perturbations
[1]-[3], [8]-[11], [29], or other modifications (as used by the author
here, cf. Sec. 7 ff.) for the small-scale surface elements. However,
the resulting discrepancies can be shown to be quite small o(1-2.5 db)
vis-3-vis the uncorrected Kirchoff method ([4], for example). Diffraction
terms are usually neglected in the analysis, but can also be shown to be
negligible in most cases with respect to the principal, direct-scatter
contributions [cf. Sec. 3.3 ff.]. As we shall see in the text following,
the various current theoretical procedures yield analytical results which
are formally very similar. However, they can diverge numerically because
of different choices of the physical scatter mechanism: capillary waves
do not provide sufficient cross-section, for instance, to account for
the high-frequency, low-grazing angle discrepancies in (backscatter)
cross sections, which have been observed empirically. Their (Bragg-
scatter) contributions are 0(10-20 db) too small. Thus, we shall con-
clude that the observed difficulties stem not from fundamental inade-
quacies of theory and approximation thereto, but rather from the selection
of a suitable physical model. As noted above, our proposed solution
is the soliton-ripple mechanism for the principal Bragg scatter contri-
butions, without the intervention of a bubble mechanism.

Our analytical innovations here are: (1) the use of a physically
independent scatter surface (the solution-ripples) riding on the gravity-
capillary wave surface which in turn is generated by the energy trans-
ferred nonlinearly via these ripples [14]-[12], with a non-vanishing
"tilt-factor"--produced by the large-scale surface--now determined by:

(2) the Kirchoff approximation applied to the development of the Bragg

*Often called "cat's paw" in the initial stages of wind-wave surface
excitation, [15].
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scatter terms (instead of a perturbational approach [4]). This removes
the restrictions of small rms heights and slopes required in the per-

turbation procedures when applied to the small-scale components, and
permits calculation of higher order Bragg-scatter terms if needed [24].
(3) We treat the gravity-capillary wave surface component as the single
surface it is, and use the approximate but justifiable technique of
splitting this surface into low- and high-frequency components. (The
associated "tilt-factor" here, however, vanishes with vanishing grazing
angle (eoT + n/2.) An insightful justification of this procedure,

from a more general theoretical viewpoint, has been given recently by
Bahar, Barrick, and Fitzwalter [24], [25], in the analogous but more
complex situation of electromagnetic scattering from (simple, i.e.,
single component) wave surfaces. (4) We develop, and employ, a corre-
lation function and corresponding intensity wave number spectrum for the
soliton waves, obtaining estimates which indicate the potentiality of the
new mechanisms here.

This Report is organized as follows: Section 2 provides a de-
tailed analytical summary of the mono- and bi-static scattering cross
sections, for high and low frequencies (i.e., large and small Rayleigh
numbers), and includes comparisons with the results of Tolstoy and
Clay [9], McDaniel and Gorman [4], Kur'yanov [21], [1], and Bahar et al.
[25]. In Section 3 some preliminary numerical results are obtained,
based on the soliton wave model described in Sec. 2.1. Included also
are comparisons with backscatter from capillary waves and a short
account of the potential contributions from diffraction effects, which
are seen to be negligible. Section 4 completes Part [ with a concise
review of the principal new results and some next steps in the experi-
mental and theoretical analysis of this class of scattering problems.
Part II consists of Sections 5-8, where the mathematical details of
this study are developed; (see the Table of Contents).

Finally, we emphasize that bubble mechanisms can (and in some
instances, do) account for the observed larger (back-) scattering
cross sections observed at high frequencies and small grazing angles.
However, here we offer a competing mechanism, in the form of soliton
ripples [11]-[19]. Preliminary observations and the present analysis
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indicate that these ripples can potentially account for the observed
data when bubbles are absent [6], [7]. Further experimental results

o are needed to establish this possibility conclusively, but already the
- work of Roderick ([6], and Table 3.2 ff.) indicates encouraging
2 potential support for this mechanism.

Part I. Acoustic Scattering Cross Sections
2. Scattering Cross Sectionsg for Composite Wave Surfaces

As noted above (and subsequently in Sections 7, 8) the principal

5 ) aim of this initial study is to obtain analytic expressions for the

- acoustic scattering cross sections of a truly two-component or composite
moving wave surface. This includes an initial numerical demonstration
that values comparable to those observed experimentally can be obtained
with the introduction of a suitable physical model, without having to
postulate a bubble-scattering mechanism [3], [4]. This is particularly
jmportant in situations where no (or negligible) bubbles are found to

be present [6].
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2.1 The New Wave-Surface Model: Surface Elevation
We postulate the following potential mechanism for the small-scale

ot 13 e

scattering component of a typical wind-wave surface: ensembles of solitons,
or hydraulic jumps, produced, as shock waves, by the impact of the local wind
on the gravity-capillary wave structure. These solutions, which mathe-
matically are the limiting solution of the Korteweg-de Vries equation

for cnoidal waves ([16], pp. 465-467), travel in all directions on the

rough, large-scale surface, with constant speed. They travel on a thin
viscous layer and probably represent the principal (and nonlinear)

mechanism whereby wind energy is transferred to the overall wave sur-

face. On initially still surfaces they appear as the familiar "cats-paw"
effect énd have rather many ripples in a typical "wave" packet. As the

rira;

&

surface builds a wave structure, with the transfer of energy from these
soliton trains progressively into the small (capillary and then gravity)
wave numbers, the wave surface becomes quite irregular and the soliton

packets lose their directionality and structure, becoming essentially
a collection of individual solitons traveling over the new rough gravity-
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'\' capillary surface. (See, for example the illustration in [26] opposite

N the inside book title page.) Here we are concerned with the amplitudes

¥y and durations of these solitons (as discussed in Sec. 3.1 ff.) from the

$‘ present viewpoint of acoustical scattering, rather than with their

" oceanographic implications for wave generation. (See Mellen [14], [15];

also [17], [20], and in particular, Lighthill [16]; also, generally, [47].)

'IE,, Unlike the soliton-ripple component, which is nondispersive, rides

';: upon, and is essentially independent of the underlying gravity-capillary

h wave surface, this latter (or "G"-surface) is a single, directional

\,, ' surface, with a wave structure obeying the dispersion law wg =

5-:§ [qKS + (dlpw)Kgf’, with Ks = 2"/>\S, where fs (= wS/Zvr) is the freguency

: of a typical fourier component of the (moving) G-wave surface [26)-[28]

% and J is the surface tension (force x distance) coefficient of water,

_:ﬁ_ with o the water density. It is convenient to divide this wave surface

:f:j spectrally into a large-scale or "gravity-wave" component (g) and an

s\.;;:: essentially independent small-scale "capillary" component (c), at some

-"-t representative wave number, kD. This, of course, is a mathematical

{ ) device, since there is no abrupt transition between the gravity wave

'.;Ef number domain and the capillary domain. This surface is really a

f,:‘;, single rough surface, where the "capillary" component consequently does

o~ not ride upon the gravity component.

<7 With the above in mind we can write for the wave surface elevation

Ve ; : .

o rst) =14, [cg(g,t) + o(r,t)]+ nglrst)gglrat), r=ix +iyy (2.1)
. where G (= g+c) denotes the single capillary-gravity wave surfacg and -

x_, S indicates the elevation of thg soliton-ripples, which ride on _1'_ch =

f-_:r':; j_z(cg+cc), cf. Fig. 2.1. Here n. is the normal {at (r,t)] to the .

.: G-surface, viz.,

‘\i ne = (i + - i )0 2y 2)!5} 2n., (= I etc)

4 G Ixex Yy - d; x %y Gegrc 97 X X ’

‘3., with generally (2.2a)

@.

f’s n, =(1+ ci + cﬁ)'%, an (Ln* jycy -1, (2.2b)
o
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;::-’ y= b(<t:>-<C$><ﬂ(;>=<';G>=0)
'3 .
?’; Fig. 2.1. Cross section of a movir.ug.wind-wave surfa_ce, shgwing soliton ripples
N (greatly exaggerated) riding on the gravity-capillary wave
;-_‘ surface &g
R
,f.: since the rms capillary elevation and slopes of the gravity components
_.~ are small, cf. Eqs. (7.18)-(7.18a). Here % and ¢, are, respectively,
,p the elevation of the "gravity" and "capillary" components, in our
., artificial division of the single wave surface &g The equilibrium
".::;' surface* is <¢> = 0.
::;Z: The spectral division of the G-surface is formally indicated by the
o (surface) wave-number-time (intensity) spectrum W(,'S,IT), here with t = 0.
2] Wglk[0) = W (k[0), 0 < [k| < lkpl,
i\: (2.3)
= =W (k10), kgl < Ikl
\': cle ] *D -l ®
X
® The two components of wG have a common directional character, determined
) 1 L R
b WG(_lglO) =5 / NG(fs)Qs['k_/Zn - _Iss(a)/Z'rr]>& dfs, fs 2 0, (2.4a)
0 -
= e
e . s .
:-:_ *Since the solitons, or hydraulic jumps, are one-sided (161, we
o see that < = Q‘GXCS>’ <gg> > 0: the equilibrium surface is <g> = 0.
“ For practical purposes, <ig> << <;G>‘, so that we may regard <z>* 0
:;. here, as we shall do henceforth. |
92
~ i
-2
@
.-\,.

-' "o s\'.\‘-'-‘-'~'-.-.v.-'~-- IR S RN R - WAL A 3 p » v
‘-S VAN ‘ VLYY \.‘ < ‘. ¢ .‘).ll. et A Y H 0,0 T N, l'.'t-"u‘,n P AN OGN,




.;:_\- ------------------------
S
o, .
.
s, 8
2
by
f::‘-' f
- - SD - K PN
0 = fo- Wolfs)<s (2 - K (a)/2n)>, df
\*'-
A
:Eﬂ" ) _ (2.4b)
'-’:, . - ~ .
o + ff W (f )< 8(Y - K (a)/2n)>, df
l.) SD
-'1'4 ~ - -
o where v = k/2r and K .(a) = K (f )i, in which i is the unit vector for
3-\ wave components of frequency fs’ e.g., iw = j—x cos a +,jy sin &, and a
. ‘9 . - N A
~, obeys a probability density wl(a) #0, ay - n/2 <o <a +m/5=0
P ' elsewhere; (there are no g,c-waves against the mean wind in this model).
‘:i In fact, from D, Sec. 7.3, we have explicitly
\'
Lo
X <8y - K ()g = 2 T s(r - Alak. + (031w (-0 )» (2.5)
X ~ ~3 a 2 (pwm)lﬁ s 2177 Py’ S 1 0
M
‘o
2
;?: which when applied to (2.4b) gives the desired wave number intensity
(' spectrum of the G-surface, in terms of its two (artificially) desig-
= nated components (g,c). The quantity HG(fS) is the point or direction-
.:; less intensity spectrum of the G (=g+c) surface elevation % = 80t e
: 4
;;: One choice for wG is the Pearson-Moskowitz spectrum [8]. (For a wave
-; number spectrum of the soliton ripples, see (3.6b) and Section 3.1B ff.)
A
e 2.2 Scattering Cross-Sections: Definitions
E% There is a number of variations on the concept and definitions of
;f scattering cross section. It is therefore important to define the
7 term explicitly, so that the different definitions can be calibrated
:f: with one another, as we shall need to do in order to effect comparisons
N with hoth the analytic results of others and the corresponding measure-

ments (cf. Secs. 2.A,B and Sec. 3 ff.).
We begin with:
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‘ = A. Incoherent Scattering Cross Sections, %inc’

o\ ——
NN Here we define
.-‘:E‘\': I(k=0) (scattering at receiver R) . R2 -1

AT 8§2Z = Iimh (at surf:ce) A R (path 1oss) x (gr99)%1
(2, incident REF

.:,;\ ]
.:\.:: (2.6)
£

..‘-.‘\ 'y . s s
' . where Iincoh’ Iincident are, respectively, the intensities of the scat-

s tered and incident fields at the points indicated. The basic concept
:E::i of the scattering cross section (for surfaces) is to eliminate the
*ﬁ: effects of source level and propagation, i.e., the effects of the

5ad medium--which are handled separately--when computing energy loss, and
,_I.; to focus on the effects of the random scattering surface itself. For
\':: this reason path loss (absorption), beam pattern gains (gT, gR).signal
‘:_,I" levels, and source and receiver distances are removed, where possible,
b as (2.6) indicates. To keep °$g<): dimensionless, a reference "illumina-
{ - tion" area, AREF’ is employed, whose specific form is suggested by the

"-."‘ composite beam pattern projection on the reference or equilibrium sur-
A face<s> = 0: S,- Figure 2.2 shows the relevant geometry. 1
) !‘. « }
X |
)

o~

o

e
‘.‘.:.
L .
LN
“.\’&
.
{x.

o

%

o |
'no ;
Q.
o - Fig. 2.2. (a) Backscatter Geometry (far-field): Monostatic scattering

oy (R@T), vide Fig. 5.1; (b) Bistatic Scattering (R#T); "for-

X ward" or oblique scattering geometry; vide Fig. 5.1.
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The various factors in Eq. (2.6) are given by

(k=0)

incon (scat. at receiver) = M§9Zx>(0) = intensity of the (in-

coherent) scattered field at the
receiver (R), cf. Sec. 7.2 et seq.;
Sec. 8 ff.;

(2.7a)

(at surface) = Ko(o)in/(4“RoT)2 = intensity of the in-
cident field at OS, on the equilibrium
scattering surface SO;

(2.70) Iincident

(2.7¢) 97s9g = the aperture "gain" of the trans-
mitting and receiving systems, cf.
(6.3), (6.7);

(2.7d) AREF = a reference area on the equi-
1ibrium surface So’ cf. Fig. 2.2,
projected by the composite T and R
beam patterns. (See C ff.);

~2aule T
(2.7e) {"path loss" = e ; coT0 = ROT + RoR; cf. Sec. 5.3, Eq.
(absorption) (5.18); w, (=2nf, ) is the (angular)

frequency of the emitted signal; a is
an absorption coefficient; Cy = (mean) |
wave front speed of sound in the
water medium;

(2.7F) RoR = distance of the receiver (origin) from Og»
Fig 2.2;

2
H

(2.79) = distance of the transmitter (origin) from 0¢»

Fig. 2.2;

oT

(2.7h) Eﬂg,t) = (vector) wave surface elevation, cf.
(2.1).
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The definition (2.6) for the incoherent scattering cross section,
(, and those similar to it ([3]-[51, (8], [9], [23]-T25], [29], for example)

N are formally independent of range (RoT' RoR)' This is not an inherent
N

. property of the definition, however; it is a direct consequence of the
v far-field assumption, whereby the effective coherent scattering area is
‘; sufficiently small vis-a-vis source and receiver distances (RoT’ RoR)
f; and dimensions, cf. Sec. 5.5 and Eq. (5.31). It also depends on the

5' correlation distances (lx,ly) of the (components of the) random wave

’ surface. Thus,oggg is implicitly a function of geometry, where care
{ ' must be taken in its use to ensure that the conditions governing the

. s (k=0) (_w(0)
2 derivation of Iincoh ('MX-<X>(0))’ (2.7a), are obeyed*

" A complete definition of the incoherent scattering cross section

‘.

.~ includes the effects of diffraction

.. ! () I S (3 I
k. incoh cincoh * § 0incoh (2.8)
- k=1
S
4

where the © k 21, are formally given by (2.6), with I(O)

{ incoh’ ' ] o (k>1) _ (k) incoh

: replaced by the scattering intensities Iincoh = MX-<X>(0)’ cf. Secs.

- 7.2C, 8.5 ff.

lﬁ Preliminary estimates (Sec. 3.3 ff.) of the magnitude of the

y leading diffraction component, 3$%20h (>> Ugtigg), indicate that it

‘, is ordinarily considerably smaller than the components of the “"classical"
i term, égggoh, so that in this study we shall be able to neglect the

.; diffraction contributions.

S s

7 *The factors 4r in (2.7a), (2.7b), and in (2.9), (2.10b) ff., etc.,
i arise because of our definition of the green's function, (5.8), and

" source function (5.3a) in the equations of propagation (here a Helmholtz
;; medium). Thus, our acoustic field is ay = a/4n, where o is derived from

‘ a green's function source of the form -45(R-R')s(t-t'). However,

% because of the particular form of the definition of 3(0) used here and
N generally, the scaling of the field is immaterial, as is required in

:3 any useful definition.
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C .B. Coherent Scattering Cross Sections, o. . *
= The coherent scattering cross section, 0(0), is formally the same h
- as 0(0) » (2.6), except that now the 1nc1dent intensity (2.7b) becomes
i~ incoh
is 2
1_ Iincident(at the receiver')coh = Ko(o)in/{4"(RoT + ROR)} (2.9)
{; which is the "mirror reflection" term. Thus, z1ncid-coh =
: (1/4)Imc1d incoh® cf. (2.7b). 1In addition, I1nco is replaced by

L : the coherent component Mﬁgl(o), cf. Sec. 7.2B, Eq. (8.7). Since only
the "classical" or (k=0) component of the scattered field,contains a
potentially coherent contribution (excluding any direct field which may

e N

W

- be received under certain mutual geometries), the complete coherent
(] scatter cross section is now specifically
: 1(0)
w R
N 2(0) - Coh(scattermg at R) oR 2.1
< = { h ] x } Py 2.
‘3 Ccoh 1nc1d(at the receiver R) AREF path oss (ngR) (2.10a)
{ ;
Y or
o«
3 2 (0) '
(0) . Rar(Rop * Ryp))” gl(0) (2.10b)
- ‘coh 2 . ) :
5 (9193)" Aper Ko(0);, * (path Toss) ,
. )
::j o
Y . )
N C. The Reference Area, AREF'
:! The reference area, AREF’ appearing in the above definitions of the i
scattering cross sections, (2.6), (2.10), while arbitrary, is dependent E
' on the beam pattern projections on So' From Section 6.5 IV, (6.56), our ﬂ
; choice of reference area is specifically ﬂ
¢ i
\ L)
o a
i where Al is the projected area (on So) of the combined gaussian-omni- ;
L4 directional beam pattern used specifically in this study. 1
N R
) R
s o
!
'’ ;
) -
o

- "" ur~ \t\' ' '." '$ ' -




U S

'i‘l.-‘; .
[P B |

........ R A Sdiaic A St Radl A

-------------------

DAL A AR D v AR A At T

13

2.3 "High-Frequency" Scattering Cross Sections:

By "high-frequency" we mean here large Rayleigh numbers, e.g.,
Rg = (koboog)2 >> 1, specifically for the large-scale gravity component

of the wave surface. Thus, we have for the elements of Rg:

ZH/AO = Zﬂfo/c0 = wave number (rad-meter-l) of the (central)
frequency of the applied (narrow-band)
signal;
(2.12)

cos ® p + cos O _p; cf. Fig. (5.1) and Sec. 5.4 ff.;

<cé> » the mean-square (gravity-capillary) wave surface
height, about <g> = 0.

Accordingly, from the results of Sections 8.1, 8.3, 8.4 for the
scatter intensities M§92x>(0), Mé%l(O) applied directly to the scatter
cross sections as defined by (2.6), (2.10b), with the reference area

given here by (2.11), we get the following "high-frequency" forms:
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where we have used (8.6), (8.7), extended to (8.29), with |X v
be, oy)’ a two-dimensional vector in the reference (x,y-) or S -plane.
The terms in { }G represents the results of the "physica]-optics" cum
"perturbational" approach, cf. Sec. 7.3 for the single gravity-capillary
wave surface, while the remaining term embodies the contribution of the
soliton-ripples. [See (2.17)-(2.20) below for explicit descriptions
of the various elements in (2.13).]

are respectively the "tilt factors” for the
capillary and soliton-ripple components of the wave surface.
Specifically, from (7.33) we have here (¢0T = n/2)

(0) Zogy ox * 2%y 5y
N (20)1ncoh 2 2
1+ & t c

2 2

>+ 6ba %y %z <6y> *%z1 »

2 - 2 -1
since n; (1+¢cq + CGy)

here. Similarly, we get

=1 - 0(10'2) = 1 for the accuracy needed

)2
<0’inco

2
h <(2a0xcx + 2u oy y - 2aoz) >G(20L0Z

2 (22 + o) 2

= 16a aoy Gy ayz)s cGy

.2
-<CG‘Y> 4

cf. (8.28a). For the gaussian gravity wave elevations assumed here,

we have <c;y> = 3°gy‘ We note that the tilt-factor for the capillary
component, (2.14b), vanishes as 8T n/2 (zero grazing angle), because
%o is really part of a single surface: the capillary waves do not "ride"
on the gravity components, cf. (2.1) above. On the other hand, the
"tilt-factor" Nég), (2.14a), for the soliton-ripples is nonvanishing (as
T n/2), as expected, since these ripples or hydraulic jumps, do ride
upon the gravity-capillary surface, Zs- These "capillary" and ripple

components show up as Bragg (or resonant) scatter terms (~ wave number

' - J\- L 4'\.- -" o 'n{'-'"""‘({.-'{n' » % " ‘.l.".‘n'l-I"h { o« "‘.‘_.
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spectra at k = Zkoaolx y) ([1], [2], [21]1-[23], etc.). These are first-

order scatter components, since °§»
correlations [24]. The specular-point term in (2.13) is independent

s

g << 1, with small-scale spatial

of frequency, generally, in this "physical-optics” limit.
Also, we have for all Rg > 0 in the coherent cases (8.7), (8.21),

20 2 2
=3k [a /A + o /B
e O OX e 3-+0:"hi-freq",

(2.15)

where og >> 05, og, since Rg >> 1 here: very rough surfaces destroy
coherence, as expected. [In addition, since A,B << 1, cf. (6.32),

the second exponential also ensures the vanishing of 8coh’ unless the
Snell angle (aox = oy T 0) is chosen.] Note that this coherent-scatter
cross section depends on the area illuminated (via Al), as distinct

from the incoherent cases, (2.13), which are always area-independent,
subject, of course, to the conditions (2.20) ff.

In compact fashion, we can rewrite (2.13) as

5(0) . 15 (0)

% incoh Rg>>1 g- inc ¥ %¢c-inc -inc G inc S -inc

where the first two terms of (2.13) correspond to °é03nc’ and the last,
to that portion of the scattering cross section attributable to the
soliton-ripple component. Our results (2.13)-(2.16) hold for arbitrary
directions of illumination and observation.

The various elements of (2.10), (2.13) are specifically:

Rg, Eb mean-square, mean, reflection coefficients (=1, for

water/air interfaces);

mean-square, mean, shadowing function, see Sec. 7.4C.
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o = <Cék>’ <c§y>: (CGX = g%l, etc.): mean-square slopes of

the gravity-capillary wave component, cf. Sec. 7.4B;

= <c§>: mean-square height (about <L> = 0) of the

.17
(2.17) "capillary" wave surface;

= <c§>: mean-square height of the soliton humps;

= surface wave number intensity spectrum of Lo (cf. (2.3)) with

o2 (ar+0) = J, Mclklo) cos(icar) ;d-% , cf. (8.25);
-~D T

ws = wave number spectrum of the soliten-ripple

2 ik-Ar
= oW = {m KS(ArIO)e d(ar)

and WS = wsﬁig = normalized spectrum;

s
L[]

1 Eq. (2.11);

(=2
1]

cos 6 5 + cos 89R? (2.12).

The directional vector 2y, is (cf. Sec. 5.5, Fig. 5.1),

Ror

20 = Jo “dor T d,(1 ¢ ROR) cos ¢y sin 6 :

Ror

+-jy {(1+ ROR) sin ¢,y sin 6,7 -L /R p} + i by
(2.18)

for arbitrary angles of illumination and observation.

Important special cases of (2.18) are:

(i). Backscatter (R®T):

=0: 8 =6 _: 3 = 25 . = .
(lo 03 oR oT’-loR ‘loT’ '?oR RoT'
hR = hT; ¢0R = ¢0T + m/2; cf. Fig. 2.2).

29, = 2(1, cos ¢ ; sin 6 o + Ay sin & psin 8 . + 1 cos 8 ;)3
(2.18a)

(2, + ol +al )fo 12 = 2/cos O ;. (2.18b)

ox oy



(ii).

Bistatic at the Snell Angle (R # T): Lof 0

(Gor)x = Qop)y  When oor = 1/2 = (600 = 1/2);

(a R) = (ioT) when L = (R r + R p) sin 6 3 »3?21; (2.19a)

(ior), = -(igp), when e g = o,

“ 2, " Zj_Z cos 8.1, OF g = iz coS 8,13 (2.19b)
2 )

(ogy * oz»/“ /2 =2 cos 8p . | (2.19¢)

Otherwise, (2.18) is the general relation.

The principal assumptions and approximations pertaining to our

(1).
(2).

(3).

(4).

(5).

(6).

(7).

(8).

general high-frequency results(2.13), (2.15), are:

Far-field (Fraunhofer) geometries, cf. Sec. 5.5;

Narrow-band signals (so that we may treat time parametrically
in the moving wave surface vis-a-vis the acoustic signal);

cf. remarks after Eq. (5.21b);

Narrow beams (cf. Sec. 6.6); at least one narrow-beam;

Neglects diffraction terms: k=1: "Diffuse" scatter; k2 2:

multiple scatter (cf. Sec. 3.3; also Sec. 8.5);

Small Rayleigh numbers for the smalli-scale surfaces, cc X
c,S - (ko o’c, S) < b

The capillary and soliton surfaces (;c,cs) are "small-scale,"

e.9., lc,S <<Eg: the correlation distance of the gravity-

wave component is much larger than that of the capillary

and soliton waves;

The small-scale surfaces are statistically independent of

the gravity wave surface component (vide remarks in Sec. 7.3A,

Eq. (7.19) et seq.);

Both components of the wave surface are essentially homogeneous

and stationary, at least over the "illuminated" area and for

times long compared to the duration of the incident signal.
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[For a more detailed discussion, see Secs. 5.5, 6.6, and Sec. 7.]

A. Backscatter (R@T)
First, by (2.15) the coherent backscatter cross section 6(0)
vanishes for these high frequencies. On the other hand, the 1ncoherent

backscatter cross section, aggg, is clearly nonvanishing. It is
obtained at once from (2.18) in (2.13). On setting o7 = ™/2, cf.

Fig. 2.2a, we have

2 2
-(tan eoT)/ZcGy

-(0) y ;E'Ef' [{e

g
inc |R@T 4
R >>1 8 cos eoT %x 0Gy
g 4
(0)
* 2 (eoT)1nc ""c(0 2k S1neoT|0) }G
16m
+0) (2.21)
: *+ ko No (eoT)mc sWg(0, 2k s1neoT|0) ]
= ((0) 4 4(0) +a(0) (2.21a)

g-inc c-inc -inc

—

The first term of (2.21), aéoznc’ is independent of frequency in this

high-frequency approximation, which is recognized as the "specular-

point," facet-, or geometrical acoustics solution form of the full-wave
approach of Bahar (23], [24], [30], [31] and Barrick et al. [5], [22], [24],
[25]. The second term, a£9¥nc, embodies the (first-order) Bragg scatter
associated with the small-scale small Rayleigh number capillary wave sur-
face, while the third term, 6§92nc’ gives the Bragg scatter due to the
soliton ripples. Whereas the specular-roint contribution Oéo) is

inc
the dominant part of the cross section at moderate angles (eo < 60°),
it rapidly vanishes for small grazing angles (eoT + n/2), cf. Fig. 3a
of [5], leaving aégznc and aé?%nc’ of which only the latter remains
nonvanishing*as eoT + /2, cf. (2.14). In fact, as we shall presently
see (Sec. 3), for (eoT 2 70°), where aégznc =0, aéggnc dominates . i..

by 0(10 or more db). It is this latter component, a§9}nc, with which
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we are chiefly concerned here. Some preliminary numerical evaluations
and comparisons are given in Secs. 3.1, 3.2, following. In particular,
from (7.33) we easily find for the isotropic cases that (¢0T =7/2)

n(0) 2

2 . 2 2
Ge-back 16 cos eoT (og(y=x) Sin eoT + cos” O

tle

oT) (2.22a)

and

(0) s 4 . 4 2 2 . 2 4
Nas-back * 16 {3 og(y=x) STN 8gp + 6 og(y oy €OS™ B8 p sin” 6 p + cos” 6} .

(2.22b)

[ ]

(For the more general, nonisotropic cases we must use (2.14a,b).)

B. Bistatic Scatter in the Snell Direction (R#T)
Here we use (2.19) in (2.13) [with the help of (8.14) alternatively

in (2.6)], since %oy = %oy =0, @y, = COS 8o, to get directly
(0) iy k]
A0 2 2 1 o 4
“incoh |R#T:Snell =~ %o S [{Sm o cos¥ o t e ot NC(O,OIO)}G
Rg>>1 Gx Gy oT
Ko,
0 2~
+ 2 cos” 8.1 csws(0,0|0)].

(2.23)

At small grazing angles (eoT ~ n/2) the facet term vanishes because of
shadowing and the Bragg scatter terms likewise go to zero, not only
because of shadowing but also because their "tilt-factors" vanish.
There is no coherent component, of course, since R_>>1, cf. (2.15).

However, off the Snell angle, although the facet term vanishes
radpily (as 0T n/2), cf. (2.15), the Bragg terms remain (eoT < 85°),
where shadowing becomes strong, and 52 + 0 as eoT -+ /2, since

(aOX,aoy) # 0. The quantity w(0,0 0) is proportional to lg, 1£, cf. (3.6b).




ol
Ve
' .i
X

. f" N ?.“-’*' “ %% '-"'
NN VIR ARR LU

Lld
S585,

a

‘2

A".

NRR
NN,

_ "“)-'.”.u

-

i

LS

.‘ .l ‘.
fd .'..'.- &

|
L a8 »
RN e B

L
-
»

.---
2
S

RS2
RN X R ARG

-----

20

2.4 "Low-Frequency" Acoustic Scatter Cross Sections

Here we apply the results of Sections 8.2, 8.4, especially Eq.
(8.9), where ﬁ;e = Rg $1and 5% 252 ~1 (for 8,7 < 85°), so that
bps ® % 0, (8.9a), for these cases of small Ray]eigh numbers Rg,c g <
We obtain the following incoherent and coherent cross sections, from

(2.6), (2.10):

<1.

"(0) {[b oW (Za

10)
1nc Rg,c,S 0994g 0|x,y

N(O)(Z 201 xuy) inc¥c (22K

. (0)
o] X.y’inc'c 0 |x ylo)]G Ngs-inc S S( =0 o|x ylo)}

(2.24)

where og z <;§>, and (2.14) gives the respective tilt-factors, N(O),
cf. (7.32)-(7.33) for details. When gravity waves are present, the
contributions of the "capillary" component and the soliton-ripples can
usually be neglected, so that (2.24) reduces to

4.4
5(0) - %% 2o (2kogy ey 10)- (2.24a)
1nc|Rg<<1 16"2 % 020 |,y e

Other combinations of the various terms of (2.24) are possible, accord-
ing to the presence or abserice of the soliton ripples or the gravity-
capillary wave surface.

Here all components of the composite surface appear as Bragg (or
resonance) scatter terms, as expected. However, at extreme grazing
angles S -0, so that (2.24), (2.24a) vanish because of shadowing.

At somewhat larger grazing angles (¢ = 10°, say) the gravity-wave com-
ponent can be ignorable vis-a-vis the soliton-ripple contribution,

because of the factor bz (=(cos eoT + cos BOR)a), cf. Eq. (3.2¢c) ff.,
which in turn is considerably larger than the "capillary" contribution.
The latter can be important, however, if the local wind conditions are

e T A o S O A S SRR S M AR S LW R TER N



AN MATA AR LA A e A AR e A R A )

21

such that there are no ripples. As long as 0T (< 0(85°)) we may expect
(2.24) to be nonvanishing, with 5 ~1.
For the coherent scatter cross section we apply (8.7) to (2.10b)

to obtain
2 2 2
(R +R )2 a2 ) [(2"‘0*) W 2y) ]
5(0) s 10T  "oR’ S Ro4y |}, 3 A B
coh | "low freq" 2 2 %52¢
R 44
ol
Rg << 1
J

(2.25)

Here again we are sufficiently in the far-field to set,hTR =0, cf. (2.20).
From (6.11a), (6.12a), (6.17), we note that Al“og ~ (cos 8,7+cos eoR)Z/cos2 )
generally. Since A,B <<1, cf. Sec. 6.3, Eq. (6.17), the exponential term

in (2.25) ensures that aéga is very small, unless (aox =q_, % 0).

oT

0y
Accordingly, in special cases we have:

A. Backscatter

From (2.18) we have 6.p = 6,13 ¢,p = 7/2 again, so that o, = 0,

%oy " sin 8,12 and ROR = RoT’ etc., with (6.18). Equation (2.24) reduces

directly to

4
—— k
0 2 2 o 2 4 - .

o neon] ret * 5" Rg —25 {116 og cos® o Wy(0, 2k, sin 6 10)

°1
"Tow-freq" '

(0) -
* Nae @ or)incMc 0,2k, sin eoTIO)]G

(0) 2 i .
*+ Ngg (eoT)iné’SwS(o’Zko sin eoT|0)}

(2.26)
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where now the tilt-factors are given by (2.14a,b) and (7.32)-(7.33).

For the coherent component of backscatter, we see that, similarly,

(2.25) reduces to
2 .2
-3k" sin“ 8 _./B(6 )
(0) 1 2 =2 2 3kq ot/B o1
coh RET * e Ro S Al(eoT) cos &,re '
"Tow-freq"
Rg <«< 1,
(2.27)

which reduces still further with the help of (6.11) in (6.18), to

(0) « R 52 -
%coh & B %i (a% cos2 8ot * b$ sin eoT) % cos eoT
2 2 2 2 2 .2
-3kg tan” @ -/2A(aT cos® 8 . + bl sin” 8 ). (2.27a)

b

This in turn reveals the explicit dependence on eoT' In particular,
= 2 (0) ] =

A ZAT/RoT <<1, so that acoh here is always small, unless eoT 0

(vertical incidence), cf. Fig. 2.2a. Then (2.27), (2.27a) become*

(0) : 1 oy 1 »
Scoh|vert "2 Al(eoT =0) wAaT ’ Rg 1, (2.28)
eoT=0
since S=1 and F; % 1: there is no shadowing at vertical incidence

and IROI 2 1 for these water/air interfaces. Of course, for large
Rayleigh numbers (Rg >>1), Ggga + 0 according to (2.15) as expected:
when the surface is rough, coherence is destroyed.

*For ar, bT’ see Eqs. (6.7), (6.11a), (6.12a); 0 < ar €1; 0« bT <1.
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B. Bistatic Scatter in the Snell Direction

From (2.19) we have here OoR = OoT® OoT = /2 (= ¢0R-ﬁ/2), with
%ox = %oy ° 0; @,z = €08 © 1, L,> 0. Thus, with the help of (6.19) we
see that (2.24) for the incoherent scatter cross section reduces directly
to

A0
incoh{ Snell
"Tow-freq"

4
7 7 Ky €05 Oy [ 2-
5" Ry ———— {ogwg(0,0|0) + w,(0,0|0)}G

n

2A
+ 0% (0,0/0)]

(2.29)

with the help of (2.14a,b). This is the "low-frequency" (R_<<1) ana-
logue of (2.24) above, showing again the (first-order) Bragg scatter
contributions of both wave surface components, e.g., the gravity-
capillary surface (G) and the soliton-ripples (S), which ride upon it.
Here fromh(2.14), Nég) = ég) = 16 a:y
spectra, w, are seen to be proportional to the (mean-square) correlation
scales of the respective surfaces. Because of the small Rayleigh numbers
for the large-scale component (g), the tilt effects are negligible here.
As grazing incidence is approached (GoT->v/2), agggoh vanishes both
because of the cos4 eoT factor and from the fact that 32 + 0, ultimately.
For the coherent scatter cross section in the Snell direction,

(2.25) now reduces to

= 16 cos4 eoT' The normalized

2
(0) . [Ror * Ror 4
8 = cos” @
coh [Snell ROT 4112 ol
"low-freq"
2 2 =2
- RoR(RoT * RoR) 5 cos ;¢
- 2 2 2 5 3 >
ReT * Rog 4n A /a? cos? 6 . + b€ sin® 6;

(2.30)

......................
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(532 = 1), Rg<< 1, where we have used (6.19) again. Equation (2.30)
also vanishes as eoT +n/2, as expected. In the special case where

R°R = RoT’ (2.30) simplifies further to

5(0) c 32 R 2 2 2 2. %
coh|Snell 5 7 — €0s 6 - (aT cos” 8 ;¢ bT sin® 6 T) 2
"1ow-freq" 2n°A 0 0
T (2.31)
Rg << 1.

In the special case where eoT = 0 we get the backscatter result (2.28).

2.5 Analytic Comparisons with Recent Results

Analytic comparisons with earlier work now provide us with various
checks on the accuracy and assumptions of the present analysis. In
addition, they indicate a variety of differences, which stem mainly
from our different choice of physical model, as well as a number of
technical differences in the analysis and some definitions. These
will become apparent as we continue:

A. Tolstoy and Clay [9]
We consider first incoherent backscatter. From Eq. (6.75) of [9],

X o _ 2 _ 2,,,2 _ 2 2
vhere1n <&'= oG(x=y)’ Yback = Ko €08 8y1s ©/2¢ (aox + aoy)/z cos
in our notation, with ¢oT = /2, here, so that %ox = 0, aoy = sin eoT’
we see at once that 2

tan eoT

- ——
R2 e ZOG(y=X)

): (0) = =
9 TGy %Gx oT

tan? eoT (2.32)
2 4 - Y
. f@_éec Ot © 2 - 22
41r\ <2 ’ %G(x=y)°’

which is just the first term of our more general result for truly two-

AL AL A f.'}
TSl S e




i
.’\ 4

.'} .’.‘l. .

AL
I S Sag N

“n e . A ™, LI TP e - A LS .
< :‘Kf\‘!'\f\{;fk'lf:'.:‘fmltﬁ{tﬁn\m T

25

component surfaces, (2.21) above, for the now isotropic (gravity) wave
surface at "high-frequencies."
Moreover, since our

“gx * “gy * 952
o 72 = 2f(6)T+C, Eqs. (6.23), (6.25), [9], (2.33)
0z

we readily see that the Tolstoy and Clay result (6.74) [9] for general
bistatic (incoherent) scattering in the "high-frequency" regime
becomes

. . v, A(0) - -
(bistatic): 6T+C,inc|Rg>>1 = Eq. (6.74) =
tan2 8
2 , 2 2% .2 [-—2
(o at +a R S
o ox oy 0z o [e , (2.38)
%7/2 4nb2 s

which is, again, precisely the first term of our result (2.21). _}n the
earlier work the effects of shadowing are neglected, e.qg., S2 =S *1.

Similarly, for the "low-frequency" cases (Rg<< 1) we have in our
7.
terminology, r6|T+c 2 R/V2, cf. (6.56), [9], so that (with R, rein-
serted in (2.24)) we get

. A (0)
(bistatic): °T+c,inC|Rg<<1

Eq. (6.58), [9] = = W_(k|0)

eR9 2

3

This 1is once more just the first term of our more general result
(2.24). (Here we have replaced 2f(e)T+c by b, = €Os 8 ¢ = COS 6 ps
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with y = bo/2, since in these low-frequency cases we do not integrate
by parts (e.g., (7.27d), etc. vs. p. 198, [9]), employing essentially
the Eckart approximations ﬁg' 2, /n, = -2, [32].)

The coherent scatter cross sections (with fT+C = bo/2 again,AT+C =
4,) at all frequencies, e.g., Eq. (6.61) of Tolstoy and Clay [9] vs.
(2.15) above likewise agree, except in the directional exponential: our
result is

2,2
3k°R
0 2 2 202,.2 2
e- 7 (ox * aoy) 2k R™ (2o * aoy)

vs. e (2.36)

T+C

The discrepancy arises because no approximations are made in the
evaluation of our beam pattern integrals, cf. 11(220), (6.38), (6.39),
whereas approximations are made in the former (T+C) evaluation.

In general, Tolstoy and Clay [9] also employ the familiar Tangent
Plane (Kirchoff) approximation in arriving at their results, as do we
here. Since they assume a single-scale wave surface, they, of course,
do not obtain the capillary and nonvanishing (as 87 7/2) {ripple-)
components with decreasing grazing angle (¢ = n/2 - eoT)’ cf. the second
and third terms of (2.13) above.

B. McDaniel and Gorman [3], [4]

Using a two-scale surface model, McDaniel and Gorman [3], [4] omit
the specular-point contribution (viz., the first term of (2.21)) and
concentrate on the small-scale capillary wave component, which is
dominant at high-frequencies and small grazing angles in their model
(but not in ours). Their evaluation of the backscatter cross section
for this capillary term embodies a Kirchoff approximation for the

large-scale gravity wave surface component, and a perturbation tech-
nique [requiring small rms heights (OE << 1) and slopes (ch’y <<1)]
for the small-scale component. Moreover, they replace the "tilt-factor"
Nég) in (2.21) by an average over a local grazing angle (as suggested

by Bachmann [291) which contains an estimate of the shadowing effects.

_ Their treatment postulates the capillary waves to be a separate wave

structure from the gravity wave component, on which the former con-
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sequently ride [so that if this were the case the appropriate "tilt-
factor" would have the form of Né?%=c)’ (2.14a), now, rather than Né
(2.14b)]. Our physical model [cf. Sec. 2.1] treats the so-called

.; “capillary"” waves as part of the continuous gravity-capillary wave

A surface régime, where the former evolves naturally into the latter via
the (nonlinear) mechanism of the soliton-ripples generated locally by

0)
C t

f? the near-surface wind. f
5 Noting [cf. Sec. 7.3 and (2.2a,b)] that our tilt-factor Nég) is
S derived from
h n . 4 ﬁ n . _:_ n -
: <(d - 2a,) /n§(;=g+c 16 <A * Zo-pack) g * 16 <(d 05 (2.37)
v
:‘:’ §
" .
:‘ in the McDaniel-Gorman notation (cf. (25), [4] and from (16), [4]), and
- that their wave number surface spectral density N(ZKL)MCD+G = A
5 (2n)'1wc(5J0)Mid, cf. (7.51), we find at once that, formally, ?
o d (0) 4 a 1
- rd = 5 2 0 ra \
[3— term of (2.21) = °S-inc] ) <(nG E/ko) S 2nNS(ZL*)MC0+G
S (2.38)
- _ g o
- = £ <l - 10 W52 Dyepeg
-;"
Here our actual ripple-surface (S) replaces the "capillary" component,
j which in their model rides on the gravity-wave structure. [McDaniel and
% Ggrman,zof course, use wc(ZKL)McD+G in place of wS(ZKL)McD+G’ where
o o, << og, cf. Secs. 3.1, 3.2, and omit the soliton-ripples.]
® Thus, our small-scale results (in (2.21)) reduce essentially (but
:? ' not exactly) to that of McDaniel and Gorman [3], [4] if we were to
:{ replace our rippie-surface by a similarly generated, now independent,
:j capillary wave surface (S * c¢), and drop the "capillary" component in
"" (2.21), so that only the specular-point scatter term and the (S * ¢)

V‘: 'N‘

small-scale terms remain. [Since high frequencies and small grazing
angles are primarily considered in their work, the specular-point

: scatter contributions may be dropped as negligible vis-a-vis the other
i; components, cf. (3.1) ff.] The various analytic differences between
- the two treatments arise from the following:
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(i).

(ii).

(iii).

(iv).

Our approach uses the Tangent Plane (Kirchoff) method on
the total surface, including the soliton ripples. This
leads to a "tilt-term" of the form (2.37) above, which,
however, reduces here to the simple result

4
\ nZ

in all such cases, since n;l =0(1), cf. (2.2b), (2.14a),
etc.

Reference [4] also outlines a similar approach, employing
the Kirchoff method on the total surface, vide Appendix
A, [4]. Moreover, a tilt-factor of the form Nég), (2.14b),
is correctly obtained (however, with a factor kg omi tted
in Eq. (A14), [4], because of a corresponding omission in
going from Eq. (A10) to (Al12) in the analysis [4]). This
tilt factor, of course, is incapable of ensuring a non-
vanishing result (as 00T n/2), as we have already
remarked above, (2.14b) et seq., and also the discussion
in Sec. 2.1. There is now no separate ripple-term, how-
ever, in the analysis [4], Appendix A. What was the
separate "capillary" wave surface has now been absorbed
properly into the gravity-capillary wave continuum. This
approach does not require small slopes, or small heights,
unlike the perturbation techniques [4], [33].

We perform the "tilt"-averaging directly on (ﬁG- a1°)4,
etc. (as does Kur'yanov [21], [33]), without the ad hoc
introduction of a local grazing angle, eg, which, more-
over, does not account for the general anisotropy of the

wave surface slopes.

In the present treatment the shadowing and reflection
coefficients are handled by the (approximate) methods of
Sec. 7.4(¢, based on Bass and Fuks [1] as indicated. (Un-
less we are dealing with angles larger than 85° (say 88°),
the shadowing effects are all small and S~ = §2 2],

e 2.8z

e & s.x n % %
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The really critical difference between our approach and that of
McDaniel and Gorman [3], [4] lies in the choice of physical model, since
there are no major differences resulting from the various analytic
methods employed. We choose a soliton-ripple mechanism, in addition
to the gravity-capillary wave surface, as explained in Sec. 2.1. They
employ only the latter, treating the "capillary" component as a sepa-
rate component riding on the gravity-wave structure, rather than as a

continuous, high-frequency part of this wave surface as a whole. They
explain observed discrepancies between experimental and theoretical
cross sections in terms of a near-surface bubble mechanism. This is
certainly a possible mechanism, but not necessarily the only one, par-
ticularly when (sufficient) bubbles are not present [6]. (See Secs.

1 and 4.1 ff.)

C. Kur'yanov [21], [33]

Kur'yanov employs a two-scale wave surface model, implicitly in
the form (2.13) (where we omit the “capillary" term). He uses the per-
turbation technique, which requires small (rms) wave heights and slopes.
For the contribution of the small-scale surface, whatever the physical
mechanism may be, he obtains a tilt-factor of the form (in our notation)

A, 4 . AL 4, 2
16 <(fig * 29-pack) /"6 * 16 <(0g " So_pack) /"26-Mid
(2.39)

. 4
16 <(0g g

%5-back’

cf. Eq. (33.22) of [1], again since Ne = i.%x * ingy -1 cf.

(2.2b) here. This, in turn with the fact that Kur'yanov's and our
(normalized) wave number spectra are related by 4?ﬁ(EL|0)K = Q(liO)Mid,
reduces our result (the third term of (2.21) here) directly to the

form (2.38) above, with W(ZKL)McD+G replaced by 2wo§ﬁs(5l]0)K, or to
Eqs. (33.16), (33.22) of [1]. Thus, Kur'yanov's result and ours (2.21)
are essentially equivalent analytically, although different methods
(e.g., Kirchoff vs. perturbation) are used to achieve them. Of course,

physically, Kur'yanov says nothing about the specific soliton-ripple
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mechanism itself, nor does he consider the gravity-capillary wave sur-
face directly, and split it into two separate physical components, in
the calculation of the small-scale Bragg

D.

scatter component.

Barrick and Bahar [5], [22], [23], [25], [30], [31]

A little later than Tolstoy and Clay [9], and by a different ap-
proach, Barrick [5] obtained the high-frequency or "optimal-limit"
contribution, namely the so-called "specular-point" scattering com-

ponent of the total scattering cross sectio

first term of (2.13). Subsequently, by a

(0) ..
n aincoh' This is the

more general approach,

Bahar [23], [30], [31] has shown that for the conditions assumed here
(cf. (2.20)), the two-component (gravity-capillary) portion of our

("three-component") result (2.13) can be

similarly for the third, independent component postulated here.

these papers Bahar has considered the mo

alternatively derived, and
In
re general problem of

electromagnetic (EM) scattering from random rough surfaces.

If we associate formally Bahar's (an
zontal polarization (HH) with our results
see that the various components of (2.13)

d Barrick's) results for hori-
for acoustic scattering, we
are essentially identical, in

form, to the corresponding EM results, provided that we note that the

definitions of the scattering cross secti
factor 4n (sterradians), cf. (32) of [30]
Moreover, the relationship between Bahar'
spectra is nzw(LJJO)B = w(&lIO)Mid, cf. (
(7.41) ff.

As a specific example, let us consid
scatter, cf. (2.21). Thus, for weak shad
from (2.13), omitting the additional soli

ons in the EM case contain a
with (2.6), (2.10) here.
s and our surface wave number
43) of [30], with (7.39),

er again the case of back-
owing (52 = 1 now) we have
ton-ripple term,

(0) = "(0)

Sincoh [back 4Tr0incoh’back
Bahar-Barrick Mid

2

i tan eoT

.Rle

o) .2 4
s“ cos ©
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for isotropic gravity-capillary wave surfaces in which s2 = Zaé(x=y),
etc., cf. (2.32). With very small slopes the tilt factor in (2.40)
reduces to cos4 00T SO that the second term becomes precisely the
horizontal polarization component of Egqs. (47), (69) of [30], while
the first term of (2.40) is just Barrick's result (136), [5], or Eq.
(72) of [30], where ¢oT = 1/2, ky = (0, 2k0 sin eoT)'

With the alternative two-scale model in which the small-scale
component actually rides upon the large-scale surface, the tilt factor
has the form Nég), (2.14a), which is non-vanishing as eoT > /2. (The
counterpart of this in Bahar's results appear in his shadowing terms
<S(P0=HH)>, cf. Section 4 of [23], and Eqs. (44c) et seq. therein.)
Thus, in general our approach yields results equivalent to the more
general (and less explicitly tractable) analysis of Bahar [23], [30],
based on a "full-wave" theory development, where now Tangent Plane
(i.e., Kirchoff) methods can be employed and the small-scale wave sur-
face components have small rms heights (but not necessarily small
slopes), as is the case of our model here. We remark, however, that
in the case of ocean wave-surfaces, Bahar et al. [25] use a single
(i.e., gravity-capillary) wave surface, which is then artificially
split into two components for analytic convenience (cf. [23], [24],
also). The small-scale component cannot then be considered as riding

upon the large-scale component, cf. our discussion in Sec. 2.1 above.

Finally, we remark that except for our and Tolstoy and Clay's [9]
analyses, and that of Clay and Medwin [11], which explicitly introduce
(gaussian) beam patterns, e.g., specific apertures (cf. Sec. 6 ff.),
the other treatments cited here assume uniform beam patterns over some
solid angle, vanishing outside this angle. [This is implicit in the
choice of reference area, AREF [(2.7d) and Sec. 2.2C], in the defini-
tion of the scattering cross section, & 0), cf. (2.6), (2.10).] Recon-
ciliation between these different choices of beam pattern is achieved
thro?%g (2.11), i.e., by appropriate choice of AREF in the definition
of 8'7/.
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Preliminary Numerical R S:
i Fregquencie d Grazing Anqles

Since we are concerned in this study primarily with the possibility
of obtaining reasonable agreement between theory and experiment without
the intervention of scattering by bubbles, as explained above in Section 1,
we shall consider only the high-frequency, small grazing angle régime,
where the discrepancies between earlier theory and experiment are most
pronounced [1]-[4]. Moreover, it is sufficient to consider one typical
situation numerically in order to illustrate such discrepancies and

potential agreements.

Accordingly, we shall treat the following specific example: (inco-
herent) backscatter, with 0,7 = 80° (¢ = 10° grazing angle) with %ot =
/2, fo = 20 kHz, central signal frequency; average near-surface wind
velocity v = 10 m/sec (% 20 knots), cf. Fig. 2.1a. Equation (2.21) is
the appropriate relation here for the (back-) scattering cross section
Aincoh' Furthermore, in this example we may ignore the negligible con-
tribution of the specular-point (or facet) scattering term, to write
(2.21) as

4
- = k
5(0) = 2 2 [; o y(0) .
oincoh R@T Ro s 0+ 16"2 NGc (eoT)inc wc(o'Zko sin 60T|0)
Ro<<1
9 _
bo1="/2 W4
0o ,(0) 2~ .
+ 2 {0 (6 1) oBuc(0,2k, sin e°T|0)] ,

16n
(3.1)

where the tilt-factors Nég), Nég) are given by Eqs. (2.14a,b); (the
unnormalized two-dimensional wave number spectra are wc’s = °c,SQc,S’
respectively). As noted above (Sec. 2.3) the (non-zero) initial term
of (3.1) provides the first-order Bragg-scatter contribution of the
high-frequency, or capillary portion of the underlying single wave sur-
face, while the last term gives the (Bragg-) scatter associated with the
essentially independent, omni-directional soliton ripples, or "hydraulic
jumps" [cf. Sec. 2.1], which ride upon the gravity-capillary wave surface.
Our task here is to evaluate (3.1) and compare the numerical results

N
oL %
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with surface models which do not include the soliton ripple mechanism
(cf. Sec. 2.5).

3.1 Backscatter with Soliton Ripples: Numerical Examples (

In order to compare with currently listed experimental data [4] we !
shall renormalize our wave number spectra via the relation N(LJO)Mid =
2nw(5|0)MCD+G, cf. (7.51b). In addition, for our specific numerical
example we need the following:

A. Calculations: [f) = 20 kHz; 6.7 = 80°; v = 10 m/sec]

(1). k, =& = 2nf /c = (2n) 20 - 10%/(1.5)10% = 83.78 rad m™;

o kY = (4.93)107 (rad mH)* ]| (3.2a)

(2). oy =7/2: 8 =80 %0 =0;a = sin 6 =0.985, [cf. Eq. (2.21)]

00X oy
(3.2b)
. (sin 8 ;= 0.985; sin’ 8,7 = 0.970; sin® 8,5 = 0.941
(3.2¢)
cos 8 - = 0.174; cos® 6 - = 3.02 -1072; cos® 6 _ = 9.09 - 1074,
oT . i oT : ? oT : ?

(3). From Cox and Munk [35], esp Eq. (6.76) of [9], we have for the
mean-square slopes:

2

5 2
g(x=y)

= (3.0 + 5.12v)1073: = [5.42 - 107% |; (3.2d)

(4). From (2.14a) and (7.56a) we get here specifically

y(0)

2,,-4
GSoinc = 16 13(5.42)°1077(0.941)

+ 6(5.42 * 1072)(0.970)(3.02 + 10°2) + 9.09 - 10°%}

3

16{8.29°10°3 + 9.53° 1073 + 0.91° 103}

16(1.87 - 1072) |. (3.2e)
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o In the same way we have from (2.14b)
g
N = 16 ([(5.42+ 1072)(0.970) + 3.02- 1077] 3.02+ 107

.-a, 4,

‘ ) LN
U fate T o
0t AP o0
LIPS I A Y

v

=1 16(2.50 - 1073) (3.2f)

B. Wave Number Spectra

. _-.:

4;; For the set of soliton ripples, or hydraulic jumps, which ride upon
:23 the rough gravity-capillary wave surface, we develop the following ele-

L mentary second-moment model.

_iui A reasonable approximation of the wave shape, or "hump," is given

A by the gaussian wave form, for a typical wavefront traveling in some

N direction ¢, viz:

- - 2,2

e oG -4r°/L R

2 &(r.t) = itee Bl(r-cet) (3.3)
O

Pt ~ ~ ~ 5 7%

::; where i =1 cos ¢ + iy sin ¢, r = sz + y2, and where A1 is a unit
( - distance "window" which moves along with the soliton, at speed Cs- It

e is nonzero for |r - cst| < 2L, where 2L is the spread of the hump to,

NS say, within e™% (2 2%) of its maximum value, cf. Fig. 16, [16], p. 465, etc.
:& We determine the second-moment functions for an (ensemble of) single

| ;ﬂ typical humps from

;n:..

E:; Ms(gr,t) z <Ef£1,t1) -5(£1+Q§,t1+At)> (3.4a)
-

A

< 2 = -ardl? -a(rprar)in?

0 < e e dr>, <81,81> ty

-'rz.:f

o ;g a8l -8(r§+r1Ar)/L2

= pL<T) e ] e dr1 (3.4b)

-Q0

where

s
[}
w
-

i@ p (1) =1- IrI/TL =1l-—5—. cslrl < 2L; =0, otherwise. (3.4c)
Sy
&
W
¢
]
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Since we are interested here in the intensity, we set t = 0 in (3.4c),
e.g., pL(O) = 1. Moreover, since we have in reality a sum of such inde-
pendent solitons traveling in all directions on the broken, large-scale
surface, we evaluate (3.4b) and write finally in this isotropic case

- LR
“ l"t!l_{dl, o

2 = axleny?,

(3.5)

2,,.2
2 e-Ar /22S

MS(Ar,O) =9 °§ = cé T g = L/2, br

where N average number of solitons overlapping at any instant and posi-
tions. Not surprisingly, from a gaussian waveform we obtain a gaussian
second-moment function. (Note the "d.c." component embodied in (3.5),
since <g> > 0.)

From (7.36), (7.41) we obtain the corresponding two-dimensional wave
number spectrum

A 2 )
) 5ar -2k 2 )+(2k 2)C)/2
WS(EJO) = [ Mc(ar,0)e k g e . OXS oy S

(3.6a)

which reduces here, cf. (3.2), specifically to

. 2
-2(k g sin 8 ;)

2,2

Wg(0,2k s1n60T|0) 2mo Le e

Our next step is to note from (7.51b) that

2

2(k L. sin 6 1)
S oT" 3,  (3.7)

. 2,2
W(kl0)y;q = 2Ms(KIO)yepug = 27 {ogis e

TS G
Il}'

.“l:.-uﬂ L)

L (0) v (0) -
so that, writing NgS -inc 16NgS ~inc | * ve convert the second (non

vanishing) term of (3.1) to the backscatter cross section attributable
to the soliton ripples in the McD-G normalization:

2

2(k L. 5in6 )
ég)lnc(eoT) 52 2 {o 2 2 ° T H.

sl@¥ladll e
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It is this result we next examine numerically for our specific example
above.

&. A Numerical Example
Preliminary (though sparse) observations [14], [15], [17], [18] sug-
gest the following ranges of values for 2L, og*

L=1.6-2.0cm. |: L = 2g = 2 LS ~%g = 0.8-1.0 cm. (3.92)
.'-LS = 1.13-1.41 cm.
og = 0.2-1.0 em. |5 ok = 4107 wP-107 w?; (3.9b)
here LS is the "correlation distance," where Ar2 = Lg is such that
Mg = e 1 of its maximum value.
For our example we select as representative values:
L=1.8cm.;. Lg = 0.90 em. | og = 0.2-1.0 cm. (3.10)

Moreover, at eoT = 80°, 52
Combining (3.2a,d,e) in (3.8) thus gives us, with (in meters)

= 1, and for the water/air interface, Rg = 1.

)2 Ly ~2((83.78)(0.90 - 107%)(0.985))°
(0.90 - 1072)%

-20.743)°

22 'z(kols sin 8,1
S e

= 8.1+ 107 (e71-10%)

(8.1+1072)e

5

(8.1 1075)(0.332) = 2.69 * 10”2 m?, (3.11)

the following expressions for the soliton scatter cross section, since
2/n = 0.637:

aé?}nc =)(0.637)(4.93 - 107)(1.37 .10‘2)(2,59. 10'5).°§ (3.12a)
2/~ K4 7(0) “
0 gs S|McD+G
o ~(0) . Dy 2
%-inc |20 kHz = 1-58 "100g | . (3.12b)

AL
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Using (3.9b) we may construct the following short Table:

Table 3.1: Eq. (3.12b); [zs = 0.90 cm; v = 10 m/sec; fo = 20 kHz]:
5% 77 1(0) 0 with Kirchoff
°s (cm) og (m") 8g EGS (db){8g™" (db): corrections=+2.5 db
0.2 {4 -10°]|] 6.32.10° | -42.0 -39.5
0.3 |9 -10%]|| 1.42.10"] -38.5 -36.0
0.4 | 1.6- 107 || 2.63.107%! -36.0 -33.5
------------------ L------------—r---------Lh------------------‘-----------
0.5 | 2.5- 1073 || 3.95. 107" -34.0 -31.5
0.6 | 3.6- 107 || 5.69-107%1 -32.4 -29.9
0.8 | 6.4- 10 || 1.01-107} -30.1 -27.5
1.0 | 1.0 107 || 1.58 103! -28.0 -25.5

[The Kirchoff correction used here is taken from Fig. 13 of [4]; see the
discussion in Section V of [4].] This correction factor arises because of
the failure of the "flatness" condition (i.e., large radius of curvature,
bokop > 1) as grazing angles (eoT > 60°) are approached.]

Experimental results for the frequency (fo = 20 kHz), grazing angle
(eoT = 80°), and wind speed (v = 10 m/sec = 20 knots) chosen here (cf.
A above) are cited in Table 3.2 below:

Table 3.2: Experimental Results* [at fo = 20 kHz; 807 = 80°; v = 10 m/sec]

Source t(agc):k -incoh
1. Galubin [36]; also Fig. 1.26 of [2] -30 db (19 knots)
P. Lilly and McConnell [37] -29 db (21 knots)
3. Hoover and Kaprocki [38] -27.5 db (20.5 knots)
k Roderick [6], at ® . = 81° -30(+1)db(20  knots)
*

See Fig. 4 of [4].

On the assumption that the data of Table 3.2 were obtained in an
essentially bubble-free environment (there was no "ground-truth" to es-
tablish this fact one way or the other), we see on comparison with
Table 3.1 that for values of og > 0.4 an acceptable agreement (within a
few db) between theory and experiment is obtained when the scattering
mechanism is the soliton ripples. [As shown below in Section 3.2,
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scattering from the capillary component of the single wave surface is
o(10+ db) smaller.]

It has also been observed that the scatter cross section (for com-
paratively small grazing angles (eoT > 60°)) increases with frequency
(Fig. 1.26 of [2], and [3]). Let us consider the cases f, = 10 khz,

20 kHz and compare with Galybin's data (Fig. 1.26 of [2]). From (3.8)
we write

05-inc @ 20 KHz)
(@ 10 kHz)

24.e'1-104+0-276 = 24 e'0o828 = 7.0 = 8-4 db- (3.13)
%-inc

This compares acceptably with a ~7.5 db estimated difference from Fig.
1.26, [2], and with Roderick's recent results [6].

3.2 Backscatter from Capillary Waves
It remains to examine the effects of the capillary component,

aé?gnc, in the total backscatter cross section (3.1) at these high fre-

quencies and small grazing angles. Here the physical mechanism is dif-

ferent: the capillary extension of the gravity wave surface is directional

and dispersive, with dispersion governed by surface tension forces, unlike !

the soliton-ripple surface above, which rides upon the former. In what |

follows we consider very briefly several spectral models of the single ]
|

wave surface (g + c). From these we estimate 0_, the rms capillary wave

c
height, and the back-scatter cross section 5(0)

c-inc’ in (3.1).

A. Phillips' Spectrum [39]

From Sec. 4.5 of [39] we have Phillips capillary wave number spectrum,

AR, = Bp aow2 <d<wza; B s 15-107%

(3.14)
nk

cf. £q. 4.5.9, [39]. Since (2m)7%(k) = W (K10)yiy = 2, (KI0)y pugs
cf. (7.51), we see that ego) in (3.1) becomes

(0) _ L8 () P S S
8-1nc = HoNgc(er) oK), = g5 Ngc B'/sin” 97 = 3.2+10 54i9 db)
3.15
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where we have used (3.2f), and Né?znc = 16&52), with (3.14), (3.2), etc.
This back-scatter cross section is much smaller than our soliton-ripple
results (Table 3.1) and the empirical data (Table 3.2). Furthermore,

it is independent of frequency, nor does it take into account the disper-
sive character of the capillary waves, as used here. However, it agrees
quite well with Bahar et al.'s results (-55 db) in Fig. 11b, [25], for
the case of horizontal polarization (which is the EM analogue of our
acoustical case here). [We must subtract 11 db (= 4r) from o(HH) in

Fig. 11b, because of Bahar's definition of 3("") cf. (2.40) above.]

B. Brown's Spectrum [40]; (Bahar et al., [25])

Since what primarily is important in the wave number spectra appearing
in the scattering cross sections, cf. (3.1), is not specific spectral
shape but rather the intensity (UE,S) and spectral spread (kolc’s), we
shall use Brown's spectrum (Eqs. (23), (24) of [25]; [40]) to determine
oﬁ from Eq. (26) of [25] and apply the result to (3.8), with /2% _ =
1.27 cm again, cf. (3.10), as a reasonable correlation distance (e'l) for
these capillary waves. Taking k4 = 1.0 rad eml
which the (continuous) gravity-capillary wave surface splits into "high"-
and "low"-frequency components ([25], discussion and Table 1 therein),

we obtain

as the wave number at

2.8 __ 4.6-10°
€ ad 2(10*2 rad m1)?

7

o =2.3°10

2. . - .1n-4 c 1
m: & oc =4,.8+10 " c¢m 5 mm.
(3.16)

Applying (3.16) with 2c = 1.27 cm, fo = 20 kHz, (v = 10 m/sec) in (3.8),
with (3.2f) replacing N;g) since the wave surface is a single surface
[e.g., the capillary structure is part of the wave surface, not a

separate entity riding on the gravity-wave component (cf. Sec. 2.1)],

we get from (3.12a)

0 ]
0nc = 2.10 2 = 4.86 - 1077 = -63.1 ab, (3.17)

which is clearly too small.
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Alternatively, using Brown's spectrum, W, Eq. (23) of [25],
directly in (3.1), with (3.2f) and the conversion relation wMid =

“ZWB+B=Brown’ cf. (7.51c), we get

s0) = 28 &ég) = (0.637)(4.6 - 1073)(2.50 - 1073) = 7.3-107 = -51.4 db,

c-inc
(3.18)

which is -40.4 db in Bahar et al.'s [25) definition of scatter cross

section, which in turn is 4n’xa§ggoh here, cf. (2.6). Comparing this
with olM) | Fig. 11b, [25], we see that (3.18) is about 3.5 db larger

(HH), the radar ana-

than the cross section for horizontal polarization,o
logue of the acoustic scatter cross section. (The difference is attribut-
able to the particular "tilt-factor" used here.)

In any case, these models give noticeably too small results (in this
second instance independent of frequency), and all lack the spectral
character appropriate to the particular dispersive nature of capillary

waves, cf. Eqs. (7.52) et seq.

C. McDaniel's and Gorman's Results [3], [4]

In two recent papers, [3], [4], McDaniel and Gorman have obtained
back scatter cross sections, which are -42 db (including the Kirchoff
corrections) for our example above (A), cf. Fig. 4 of [4 ], and are
noticeably below the empirical results, cf. Table 3.2. Their very ex-
tensive analysis takes into account the dispersive character of the small-
scale, or capillary component, but does not include the suggested inde-
pendent soliton-ripple mechanism. Moreover, they also show that
diffraction effects (including multiple scatter) are quite negligible
(Sec. VI, [ 4]), as we note below in Sec. 2.3 also. We refer the reader
to these papers [3], [4] for details; (see also the discussions in Secs.
1, 4 here).

3.3 Backscatter from Diffraction Terms (k 2 1)

Applying (8.17) to our definition (2.6) we see at once that the back-
(and, in fact, omni-directional) scatter cross section for the diffuse
diffraction component (k = 1) in our theory [41]-[43] becomes (cf. Sec.

. 8.6 ff.)

-, 'n’.“~'.-"~- X -'$~'$H'\f$-l‘\(\-\-:!.d“f w
S it L) X .
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83ncoh 2 {<cg|Jg|> + <cC|Jc|> + <;S|Js|>} ,

- O=UN|

(3.19)

gl = I‘Exx‘?yy - nyla’

which is put to the same scale as the principal contribution 6§230h’
(3.8), for comparis?n with t?e)data of Table 3.2 and the example of 3.1C,
. (1) _ .1 =
by the relation 2"°incoh = OMcD+G® cf. (3.7).
Some simple numerical estimates of (3.19) may be obtained by re-

placing <c2|Jl> by <c2>IJCI. We suggest that

0(1077 = -70 db);
(3.20a)

2=0(10"} m?); 9! - 0(10°8 m2y .- <:§ 914>

= o(107° ml); 9.1 = o(10%-10"1) -~ <c§ 91> ~ 0(10°-1076)

O(-50 to -60 db);
(3.20b)

¥= o2 <1072 n?); Wl = o(10°1) <c§ lalg> ~ o(107%) = 0(-60 db);
(3.20c)

where in (3.20b,c) the curvature is comparatively large. Since

(16n2) = -21.2 db, we see that even if these scatter terms are 10 db, or
even 20 db, too large, they are ignorable compared to the main capillary
(and gravity) contributions Gﬁo), 8(0)
ment of the former which renders it essentially zero, e.g., at ¢0T = /2,
and & = 0, so that the mean direction of the gravity-capillary wave

unless there is a special align-

0
surface is directed at right angles to the beams in backscatter, cf.
Fig. 2.1a. The main contributions of the soliton ripples, ago), however,

dominates the above in any case, and is essentially directional as
well.

We may expect the multiple-scatter terms, 6(k>2), in the scattering
cross section (2.8)» to be even smaller than the diffuse scatter terms
(k = 1) above. This corresponds to their negligible contributions as
computed by perturbation theory (when the slopes of the capillary and




ripple waves may be regarded as small), cf. Sec. VI of [4]. Thus, when
a truly two-component wave surface (in the sense of our present model)

is illuminated, we may neglect the diffraction terms (k > 1) vis-a-vis

the Bragg-scatter contributions, as noted in (3.1), for example.

4, Conclusions and Next Steps

As we have already noted in Section 1 above, our principal results
are fundamentally theoretical, combined with selected numerical compari-
sons of our new model with earlier theory and experiment. We summarize
below the general new features of this study (Sec. 4.1 ff.) and suggest
needed further theoretical and experimental efforts (Sec. 4.2 ff.).

|
4.1 Principal Results !
The new features of our work here are: i

i

I

(1). The identification of a potential mechanism for the second component
of a composite wind-wave surface which may resolve the often ob-
served discrepancy between theory and experiment at high frequencies
and small grazing angles without our postulating a bubble mechanism
(31, [4].

This alternative mechanism is the ensemble of soliton ripples,
or hydraulic jumps, riding on the main gravity-capillary wave sur-
face, by which the latter is itself generated through the nonlinear
action of local near-surface winds, or “cats-paws" [cf. Sec. 2.1 and
[141-[18].] These ripples, broken up into solitons on the wind-
driven, rough gravity wave surface, travel with constant speed and
are nondispersive, unlike the gravity and capillary waves, cf. Secs.

2.1, 3.1 above, and are directional, according to the local near-
surface wind. They disappear when the lecal wind (momentarily) stops,
but are otherwise generated much of the time in usual seas.

Preliminary numerical estimates (Sec. 3.1) indicate quantitatively
that this ripple mechanism can account for the previously observed
discrepancies between theory and experiment at high frequencies and
small grazing angles, when there are no bubbles.
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f;b (2). The development of a truly two-component wave surface model, where
AN the above ripple surface is essentially independent of the single
:;2 gravity-capillary wave surface on which these soliton-ripples ride.
:}?: Analytically, the practical, approximate theory requires three
C:; scattering components: (i), large-scale gravity waves ("low"-frequen-
e cy); (ii), the capillary continuation of these gravity waves ("high"-
Ziﬁi frequency); and (iii), the independent soliton or hydraulic “jump"
ff% ripples, generated by the local wind action.
S The divisions of the wave surface into components (i) and (ii)
Si\. is an insightful technical device [as Bahar et al. [25] have noted,
'E§f for example] while (iii) is a separate phenomenon. The former yield
'ﬁ?j specular-point scatter (i), which dominates at large grazing angles,
- and (first-order) Bragg scatter (here) (ii), while (iii) also
:é: generates a first-order Bragg scatter, which, however, we suggest is
X significantly O(10+ db) larger than the capillary contribution (ii),
:;J cf. Sections (3.1), (3.2). Of course, in those intervals when there
':" are no local interacting winds, the capillary component dominates,
‘“; unless there are sufficient near-surface bubbles. For example, these
’“ﬁ latter can be comparable to the soliton ripples, producing o(3 db)
:; increase in the scattering level, which are probably not resolvable
’:‘ within the accuracy of previous experiments. See also [6].
)
;:; (3). Verification of the general analytical agreement between the various
EE& principal approximate results for the scattering cross sections
A obtained in the literature [cf. Sec. 2].
-.—.‘ Thus, the Kirchoff-Perturbation approaches of [4], [21], [33],
“:&3 for example, and the author's "Kirchoff-Kirchoff" method (cf. Sec.
;:js 7.3 ) yield essentially the same form of Bragg scatter component,
inj albeit with somewhat different "tilt-factors," (cf. (2.37), (2.39)).
Eif“ In most instances these tilt-factors are approximately equal,
;5? because the rms slopes of the large-scale gravity-wave component are
:5; themselves quite small, e.g., OSx,y =&?(2,3 °10'2). An excep-
Z;S tion, however, is the tilt-factor, Ngc , associated with the arti-
[} ficial split of the gravity-capillary wave surface into low- and
P'ﬂ
[+ <
%Y

'.\
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high-frequency components: the tilt-factor here vanishes with zero
grazing angle, unlike the situations where there is truly a second,
separate wave mechanism riding on the first surface, as presented
here.

Numerical differences [cf. Sec. 3.2] between the earlier results

stem principally from the choice of a wave spectrum model, which in
turn depends quite critically on what is the underlying physical
mechanism,

Corrections for the well-known limitations of the Kirchoff or
Tangent-Plane method are small O(1-3 db), cf. [4], Section VI, at
small grazing angles, vis-a-vis the general level of scattering cross
section determined through these earlier models, as they are also
when our present wave surface model is employed.

(4). The observation that the diffraction terms (diffuse scatter (k = 1),
and multiple-scatter (k2>2), cf. (3.20), are generally well below
[0(15-20 db, cf. Sec. 3.3] the main contributions of the direct
scatter components, e.g., the specular-point scatter components
(important at large grazing angles) and the Bragg-scatter terms,
which dominate at small grazing angles (eoT > 60°), and high-fre-
quencies. This agrees with recent results [4] using different theor-

etical methods (i.e., perturbation techniques).

(5). From the above it is therefore clear that the large discrepancies
between theory and experiment at these critical regions of small

grazing angles and high frequencies are to be explained by the proper
choice of physical model: the problem is not fundamentally analytical.

We emphasize again that a bubble mechanism can explain the observed
discrepancies between theory and experiment, provided, of course, bubbles
are actually present in sufficient numbers. Moreover, if bubbles are so
present, their effect should add only O(3 db = factor 2) to that already
produced by the independent "ripple" surface (on the assumption both
mechanisms are comparable scatterers). The presence of bubbles, however,
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was unfortunately not quantifically verified in most of the experimental
data cited earlier for comparison with theory, cf. Table 3.2 and refs.

We also emphasize that our proposed soliton-ripple mechanism, al-
though an observed phenomenon, has only been measured to a limited extent,
particularly on gravity wave surfaces: our numerical estimates have been
inferred from very limited data so far. Thus, while the reliability of
the analytical procedures is not in question [cf. (3) abovel, it has not
yet been established that the soliton-ripple mechanism fully explains the
observed scattering levels in the absence of bubbles. Further experimental
work is required [cf. Sec. 4.2 ff.], to obtain the needed dimensions
(height and length) of this mechanism. ([We remark that whenever inde-
pendent measurements verify this mechanism quantitatively, we can then
apply acoustic {back-) scattering techniques like those described in de-
tail here to obtain the desired scale and size of these ripple effects
in subsequent applications.]

Other new features of our analysis include: (1) explicit development
of the rale of gaussian and omni-directional beam patterns; (2) general
second-moment and covariance functions, from which we shall subsequently
determine wave surface spectra and related (i.e., doppler) effects;
(3) general narrow-band signals and absorptive phenomena; (4) numerical
estimates of diffraction contributions; and (5) an extensive discussion
of the various approximations, and their conditions, which underly the
analytical results.
Finally, we note that our general model here can be applied at once
to such special cases which may occur physically as:
(i). no soliton ripples, just the gravity-capillary wave surface
(no Tocal winds): one drops the "S-terms" in our results.

(ii). soliton-ripples and bubbles: one may use the additional
bubble contributions, for example, as treated in [3]. Their
effects, of course, will depend strongly on the bubble den-
sity, whether or not they are ignorable to, comparable to,
or dominate the soliton ripples.
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4.2 Suggested Next Steps i
The following is a necessarily incomplete list of suggested next
:-ji; steps in the ongoing treatment of surface scattering. It is convenient
. to separate the list into Experimental and Theoretical topics, although
N the two are closely related here. We have:

o Ll
.

(

E‘{ A. Some Experimental Topics

j’, (1). Measure directly the rms height and the mean duration of the
{t- soliton-ripples, under various near-surface conditions, [14]-
\ . [18], including no to full gravity-wave development;
E‘,‘ (2). Mean (back-) scatter intensities under (1), simultaneously,

‘E with particular attention to the possible presence of bubbles;
N (3). "Forward" and bistatic scatter generally, also under (1), (2)
% above;

f:: (4). Develop acoustic techniques, based on the associated theory

:I:: here and below (8), for measuring the relevant parameters of
o the small-scale scatter components.
(

: B. Theoretical Extensions

_.:- (1). Apply results of (1)A above to the analysis developed here;
;’-Z (2). Calculate representative (backscatter) cross sections for all
scattering angles (0 < eoT < n/2), and selected surface ripple
e parameters;

I‘,-':_' (3). Apply Bahar's general "full-wave" approach [44] in detail to
:I:-: relate the former to the approximate solution obtained here.
:. (4). Determine the doppler spectrum of the composite wave surface
‘_j: in our general model and compare with experiment [6];

' :) (5). Examine the contributions of higher-order Bragg scatter;

:; (6). Develop further, and apply to quantitative estimates, the con-
.ﬁ tributions of the diffraction terms vis-a-vis higher-order

’ approximations in the direct scatter theory;

‘,;: (7). Generalization of the results to anisotropic surfaces;

ﬁ (8). Examination of various corrections to the Kirchoff or Tangent
.’. Plane approaches.

N Finally, we stress once more the need for carefully controlled experi-
; mentation, where "ground truth" regarding surface phenomena is fully ob-
: tained, and where the subtleties of the associated signal processing are
both understood and applied [6].

¢
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o Part II. Analytical Models

g; 5. The Received Scattered Field

,I‘ Here we present the analytical features of random wave-surface scat-

)1’: tering when the incident radiation is acoustic propagation from a direc-
tional source. A directional receiver is employed, in the manner of
o Figure 2.2 above. While much of the present theory is well-known [1],

..

'\‘* [2], (81, [9], [21], [22], [33], we shall also include here a number of new
hd‘ features and results. Our treatment, however, is intentionally concise: we
2 refer tne reader to other references (see Section 1) for many of the details,
- in the interest of brevity and attention to the main problem at hand, viz.,
i{ the determination of back- and forward-scatter intensities, along with their
.,:, attendant assumptions and approximations.

..

.::, 5.1 The Received Scattered Field, I: Formulation

:::; For the total scattered field «(R,t) at a point P(R,t) in a linear,

is inhomogeneous, and possibly random medium, or on its boundaries, we can

! write generally [12], [43], [41], in operator form

3

> : A

E) (a(Rot) = = ln o Rst)) ; M= MQ, (5.1)
=" o

"J' where o, [=ﬁm(-GT)] is the homogeneous or unscattered field component and

:. the brackets { } denote the ensemble of such (random) media. nge 'GT is
t:’ the source distribution (which includes the sensor array), and M_ is the

integral operator whose kernel is the green's function g(ﬂ,t|_|3_‘ st') for an
\ infinite, unbounded medium (except for source regions), which is also homo-

:-'::; geneous (but not necessarily lossless). The operator,™_, is the field-
',:ZE: renormalization operator, where Q, cf. (5.1), embodies the scattering mech-
. anisms appropriate to the physical situation. Here, for example, we have
= e

o Q=05 +0Q (5.2)
o ,

& where QS represents 'fhe scattering effects of the air-water boundary, or

wave surface, while QV describes any volume inhomogeneities. The specific
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form of ﬁm is, of course, determined by the (usually differential) propa-
gation equation for the medium, without inhomogeneities.
Next, we shall make the following assumptions:
1. The medium supports an (extended) Helmholtz equation of propa-
gation, e.g.,
(v¢ - L3 ya=-6 , (5.3a)
2 T
c. at
()
with Cy = speed of wavefront propagation in the medium.
I1. The medium (except for boundaries, here the surface) is therefore
homogeneous

o QV = 0. (5.3b)

III. Only local surface scattering interactions are significant, so
that Eq. (5.1) becomes on developing the Perturbation Theoretical
Series (PTS) [42]

o= 7oA e 0o .

o= aH + nzlnm H= % + M“QSaH 3 (5.3¢c)
and

a = o, + oy Sap = M‘”QSQH' (5.3d)

The approximation (5.3c), which neg]ectskcoupling of the scattered field
to the scattering elements (embodied in Qs), e.g., terms 0([ﬁm6](2)) or
higher are dropped, is a form of Born approximation. This appears to be
eminently acceptable in practice, since scattering from wave to wave over
more than neighboring wave structures is negligible provided, for c =

o t cl(z), that vc £ 0: only "nearest neighbor" wave surfaces will
support multiple scatter (diffraction) effects. Conseguently, we call

(5.3¢c):

a = ay + MwQSaH (5.4)

-----

-}\‘I‘..\‘h> Wt ) \‘-\ '\(

. PRI LN A
¢ 3 . >




"
the field for an "Exact" Wave Surface Theory,* under the conditions
(5.3b) [and (5.3a) if we restrict ourselves to (Helmholtz) medial [We

g,
-

n':-v-
jﬁ shall remove this restriction presently, cf. Sec. 5.3 ff.]
i& The received scattered field is
o Xp(t) = Rap * RM_Quay, with o, = M (-Gp) , (5.5)
-
f{} 4 where now R is the operator for the receiving aperture**, viz.
{ ' -
o . =i+d(>0)
P = st dL = 3
fr R IV gzjfBr ‘ An(n.s)( )N,!_.l)’S e’ 5o, Ims = 2nif ,  (5.6)
h."- R .. -
L (===i+d)
?— where (M, d1) are vectors and their codrdinates, assocated with the re-
;fj ceiving aperture, in the volume VR’ and AR is an aperture weighting
ﬁ:ﬁ function.
e For the narrow-band signals and far-field (i.e., Fraunhofer) condi-
{ | tions [cf. (2.20)] postulated in our present work, R, (5.6), reduces to the
js much simpler form
:;»j A . )
e = -y - . s as
- R‘f.f. Qg - 2ps o) for & Olys o7 - (5.7)
2 n.b. 1 -
ﬂis where
™ - -
t: SR =__1'_Rfo/co 5 YR " _joRfo/co = "steering" wave number. (5.7a)
[
e .
I
o *We drop the bracket { } notation henceforth, remembering that o is

5‘.'

" » " l. ll
O NN @R

a random process, since QS is also; ays M_, of course, are deterministic.
**Here Blr'1 is a Bromwhich contour (-«i+d, «i+d): all singularities
of the integrand are at Re(s) < 0. For steady-state excitations d = 0 and
the result is the well-known Fourier transform, with s = 2nif, f = (real)
frequency. For transient excitation, d < 0, and one has a Laplace trans-

form,
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Here fQ is the central frequency of the original (narrow-band) signal,
and -iR’ -ioR are (inward) unit vectors, with -ioR along the main axis of the
(complex) receiving beam, QR’ cf. Fig. 5.1. (We note also that the beam

O iy

.A. ']

3y, patterns are functions of frequency, generally, Sec. 6.1). For the omni- J
-.. .
::.: directional receiver used in the experiments [6], QR = OR(fo)’ a complex !
L constant, [cf. Eq. (6.14) ff.].
) 5.2 The Unscattered Field .
A
w2 For the Helmholtz media (obeying (5.3a)) it is well-known that SN
{ . :
MoRatIR't') = = [ dt' [ )pu o0 R g (R.EIR'SE'); ,
- = (5.8) :
z with g_ = 8(t-t'-p/c )/4mo , oz|R'-R| i
LJ
::,, so that the homogeneous, i.e., unscattered field component @, (5.9),
“J becomes at once the familiar result [41], [42] ¥
J i
" '
z ay(Rot) = [ Gr(t-p/c,R') S, G e v, (5.9) ;
) VT
.r:'
) where V. is the source domain and R lies outside V.. In the far-field ‘
e we get in straightforward fashion [34] for narrow-band signals: .
- ~ k]
o A . s(t-j;R/c.) "
.- 2 _0 VIFS od : T=""0'ds__ ;
% “H(E’t)'f.f. R Isrl O (Ligdgrlsy/2nis s,Si,(s))e 201
f'
- n.b. (5.10)
N (i = R/IRI5 Q7R = R) (5.10a) ;
~ !
:C: where now(l.". is the generalized beam pattern [12] (with R' - 3 ff.)
N \ solir-dor)&/¢, .
- QT ) fv AT(E’SO)Sin(SIE)e dé (So = 2rify), (5.11) ,
-.: T :
3 in which -ioT is a "steering" (unit) vector, cf. (5.7a). Here
L)
) Sin(s1&) = ASin(sle) = A3, (s(tlg) (5.12) '
! 4
3
o

-
s ¥

N
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is the amphtude spectrum of the (here narrow-band) signal S (t) = Aos(t); .-i
A = f ( )dt, Re(s) >0) The quantity A, is the (peak) amplitude "
;:j of S (t), e.g. <S2 —2‘1<s >, <s®> = 1, where <> = time average (as ;]
R T~ °°), or over the finite interval (to, t0+T < ») if Sm(t) is of finite o
duration. iy
' Like AR’ (5.6), AT is the aperture weighting associated with the

n transmitter, at each element d¢ where the signal is applied. In the gen-

o eral case different signals may be applied at different locations (g) on

5 the aperture: hence, §1.n = Aosm(sl.‘:’.)’ cf. (5.12). However, we shall

_ assume with little loss of generality that the same signal drives each ele-

S: ment, so that Sin(slf’.) = Sin(s)‘ Then (5.11) reduces to

: s (1? i )eg/c

-; Q = s (s) IVT Ar(g,s,) e 0T =oT =% (5.13a)

N = S (0 (vryorsife)s (¥ = igf,/c,ys etc.) (5.13b)

o

.

= where now O.r is the (complex) beam pattern of the transmitting aperture,

{ in these far-field situations.* Applying (5.13) to (5.10) then allows

‘ us to write for the (as yet) unscattered field the not unexpected result

s A -R

. “H(B‘,t)lf-f. - 4‘% I in(s)eS(t <o) il (5.14)

: ; n.b. 1

9|

S subject to the uniform drive condition Sin(slﬁ) = Sin(s)’ with QT given

] by (5.13b) as defined in (5.13a).

; 5.3 Absorption and Doppler

: Although so far we have assumed that the medium of propagation is

i lossless, in reality there is some attenuation, mainly because of molecular

.d absorption at the frequencies employed here (<40 kHz). In general,
e

;.' *In the "near-field" or Fresnel regions the "beam pattern" becomes
Y range-dependent, as a consequence of the quadratic terms in the expansion

~ of o = |R-€l, (R' ~ £). To avoid this, a useful far-field condition is "1
$‘; max/x <<R, where L is the largest dimension of the aperture and Ao ::‘
- (= colfo) is the wavelength of the (central) frequency of the postulated N
Z: narrow-band signals. ‘
4 )
A !
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absorption affects the beam patterns and waveforms. But with narrow-band

excitations the general relations simplify greatly, reducing to 4 simple
attenuation factor.

To see this we use the transform Yo,m = 3}{9w} of the green's func-
tion solution to the basic propagation equation for relaxation absorption
[42], viz.

B)VZ

[+ Tox 3t

19 =
- —Z-F]gm = = Gtt|6-BB.I L (5’15)
c0

so that Y° obeys

2 2,2 ' = . 1 ' = y! [ -st'
[(1 + TOXS)V - S /CO ]Y ,® (SBR. 5 Yo(.R.’Sl.R-. st )m Yo(ﬁaslﬂ )c,,e .

(5.15a)
For this it is readily found ([41], I) that
- E-§-(1+T S)-%-St'
c ox
e 2
Y = R 1., =a/c . (5.16)
0, 4rp V1 + TOXS ox X0

For typical oceans the relaxation time t__ of the medium is t_ = MaSO i
-6 (?X 2 oxX g 4
= 0(10"° secs), so that for weak absorption, e.g., (rox|s|) << 1, fmax
(= |s|/2n) is O(40 kHz). For frequencies less than 0(40 kHz) the medium
is essentially purely absorptive and nondispersive. In fact, we can re-

write (5.16) as

- BS | ¢ -
o st {1-(1-14,5) %}pS/CO
YO,oo - £ 4np : TF - < (5.17&)
V1 ToxS
2 2
: o’ "ox/ <o
= (Yo, = Helmhotz" [ > (Yo hemm & (5.17b)

since for narrow band signals s - Znifo, where §T{gm = Eq. (5.8)} gives
(Yo, Helm® the first factor of (5.17a).  For f = 20 KHz, /T#r Ts] =
1.06 = 1, and for fo = 40 kHz, /T¥r Ts[ = 1.12 = 1, also: the s-dependent
denominator is effectively unity. Accordingly, for narrow-band signals
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B and positions in the far-field of the source we simply scale the signal
‘:f- amplitude A by the factor exp(-ang ,» viz.

’SQ -augR 10 __ 2

;SQ Ao -> Aoe R a: rox/Zc0 = 0(3.7 - 10 sec“/meter) . (5.18)
-\-',

Efl Equation (5.18) shows the well-known result of attenuation exponentially
Eks dependent on distance and on the square of the frequency for media where
:E; relaxation absorption governs propagation, in the manner of Eq. (5.15)

NN above.

S . ) The effects of doppler are, however, more complex than the ("low-
f:t: frequency") attenuation. Doppler produces a frequency modulation of the
fg:i original signal. The principal mechanisms for this in underwater studies
db are platform movement and the motion of the ocean wave-surface. As long
o as the doppler velocities are comparatively small [e.g., v/c0 < 0.10, say],
Jfﬁ; a practical theory is possible, cf. [34]. In our present study, cf. Fig.
Ex: 2.2, both the transmitting and receiving platforms are effectively sta-
'fj: tionary in space, so that only the wave motion modulates the incident

(' radiation in the course of scattering. The effect of this is to introduce
ﬁ;. a time-delay Atds, in the time-variable quantities which appear in the

.j{j expressions for the received, scattered field, as noted below in Eqgs.

-i; 5.22. This time delay is a function of a time-variable position, depen-
:}. dent on the moving wave surface.

.iz

fi 5.4 The Received Scattered Field, II: Canonical Forms and Geometry

)ﬁi Before we go on to consider explicit wave-surface models, which will
Iy dictate the specific nature of our attack on the problem [cf. Sec. 6 ff.],
}: let us obtain a canonical series development for the received, surface-
:E: scattered field represented here by (5.5).

;&: Th1s is done by observing that the field renormalization operator,
:;: TL (= M QS), cf. (5.1), can be expanded in some suitable hierarchy of

<. (1inear) operators of increasing complexity, as represented by the sum

7, - g (5.19
o,

o,

N

L 0
_;i
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itj since the scattering process is linear. The quantity a, is an expansion
(t coefficient, whose specific form is determined jointly by the physical
N nature of the scattering surface and by the particular method with which
1%: a specific expansion is to be carried out.

:;: For example, in the usual perturbation technique (Perturbation

) Method = P.M.) here, the boundary, e.g., scattering surface £, is per-
‘:ii turbed or expanded with respect to some appropriate reference surface S
:t?; [4]. In recent treatments [33], [4] where a two-scale wave surface is
':f postulated, the reference surface is chosen to be the large-scale, or

Ny
t gravity-wave component. The perturbation is then embodied in the expan-
-l sion of M_ inT)_, where M_ is defined on Z and expanded on S, cf. Sec.
jﬁj I of [4], while QS is likewise defined now* on S. Thus, (5.19) becomes
.-:'.'

:-:' - ® ,.[ 1] -

® N.= 1 aM, Q. (5.19a)
ey £=0

o

33

Y . . . .

o The expansion coefficients, a,, become now a, = at = (ko°c)£’ with the con-

-y

N dition ko°c<< 1, og = <cg>, which is required for practical convergence
. of series like (5.19). In addition, the radii of curvature of the small-
:Sj scale surface component must be large compared to Igcl, the magnitude of
ﬁ: the elevations of the smali-scale surface component on S, so that the

\ ~

ﬂb expansion (of M_) is unique. This is equivalent to requiring that the
“L slopes of Ce be small, also, a condition, however, not generally met

:; here [cf. Remarks, Sec. 1].

¢:$ Accordingly, we employ an alternate method of expansion, based on

) "~

i:a the structure of the (local) surface scatter operator QS (on £), rather

o than on the expanded projection of the (non-local) integral operator M

ﬁiﬁ on S. The expansion coefficients, a,, are now based on certain statis-
<j;f tics of the numbers of different orders of (multiple) scattering inter-
j: actions. This type of expansion turns out to be essentially independent
6:' of both local elevation and slope conditions, cf. above. Instead of
N (5.19a) we have
AN

~“~  TTmmmemess

- *In a one-scale wave surface, S = S = <t> = 0: the reference sur-
%

‘j face is the equilibrium (= mean) wave surface.
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T M= 1 bMact , or Qg = ) b,Q [“] (5.19b)
{l’ 2=0 2=0

o

s

o The kernels, or we1ght1ngs of these surface scatter operators 0[2]

-\‘

e are given by QS (_& ,t'), where R' € £, the (composite) wave surface

L and t' is a doppler-delayed epoch. As we shall see presently, cf. Sec.

! ~ 7, the lower orders (2=0,1) generally represent direct scattering com-

“i ponents here, while the higher orders (2 = 2) embody the multiple-scatter,
'.:’; or diffraction contributions.

{ : The integral operator M_, cf. (5.8), applied to QS’ which is itself

4__; applied to oy (5.14) on the actual wave surface, £, in the same way oy

,‘ was obtained, gives us in the far-field of the surface, the scattered

3\: field . This becomes with the help of (5.7) in (5.5) the following

'. general (complex) result: )}

15

s b

s @ = 1 B, (5.20)
. 2:0

.

e
( where, canonically, we find that, along with (5.18) for absorption,

v (2) : (2) st ds
% WO A T SR Gl By 1) B
- "o 1 (5.21a)
) and

& (1) (v) 5
R Fs ' =1 Qg (wepeors oy (urmeor3 )0 " (1 5t") -
. 0

o -sT -s(;' - Yer'/c -awz-(IR + | +|Ro+z ] ) ds

R ce 0 TERT=TT0 o TotsTw SRS —2—°——— (5.21b)
$_. (4r) RTRR .

e

PN

’_:. where (r',t') are codrdinates associated with the wave surface :. (Here

:-:: Fgg) is a degenerate form of what we call the Total Surface Spreading

. Function (TSSF) F( )(s ,5-5'18), where we regard the moving

.

o wave surface as a t1me -variable filter. The slow (temporal) varia-

®. tions of the surface (elevation) ¢ vis-a-vis the acoustic signal permit

e -

3

A

0
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this "parametric" form of the TSSF where now L is explicitly time-variable,
as are all factors which contain E.and its various spatial derivatives.

—
P

)

e

The geometry of the general (far-field) source-surface-receiver configura-

‘tion is shown in Fig. 5.1. ;
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The various elements of (5.21) are described below. We have

o ‘ .‘l" 1'"1.‘_

Ag = effective "illuminated" surface area, by joint beam pro-

»
.

[ jection in So’ cf. Sec. 6.3, Fig. 6.1 ff. (5.22)
: dS, = dr = dx'dy' = dxdy on S_: T = 0; with dr = dS/n; (5.22a)
(
- '=r+ Z |, where r' is always on the wave surface, I; (5.22b)
re= ixx + J_yy, [(x',y')-system is simply a translation of the
N (x,y)-system] (5.22c)
. To = (RoT + ROR)/CO: time-delay from 0T > 0S > Op: (5.22d)
: do7s dor E-BoT,oR”BoT’ _BORI: unit vectors; (5.22e)
y i dgE 3T,R/|B-T,R‘: unit vectors, to projection of scattering
4 point on I upon S ; (5.22f)
Rr. Rps Rype-- = IB_TI, IBRl, etc., distances; (5.229)
: t' =t - btyg = doppler-shifted epoch; (r',t') are on the
2 wave surface 1; (5.22h)
¢ S oz ) ) . oz . .
> dtys = dp-r'(met) = dp-qr+ glrst-Rp/c )y © Rp = R - 1 o« ri(5.221)
l;g;,t) | = (vector) elevation of the wave surface, vs. g = 0,
the plane So; (5.225)
as= ro/2c0 = absorption coefficient (sec'z/meter), cf. (5.18);

« n, = (1 + ;)2( + g)zl)-%; Tyr By T g—f-(-, g—; : surface slopes (5.23a)
; n = (outward) normal toﬂsurface Z, = (lxcx + iycy - _1_Z)nz;
: (inward normal = -_iz) (5.23b)
': YoT® Yo = beam-steering wave numbers, cf. (5.13b), (5.7a); (5.23c)
RTR = _L)0+ iz(hT-hR), cf. Fig. 5.1; vector distance between
r 07 and Op. (5.23d)
E'. From Fig. 5.1, it is readily shown that the unit vectors jT’ j-R become
:;f for these bistatic configurations
3
d
19
Q)
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iT So =-BT/|-ET| =ix cos¢p sines + 1, siney sinog + 1, cose (5.24a)
Jp S, = Re/IRpl = -{1,Ry cosop sinéy + ;y(RT singy sinbp -L )+ i hp}/Rp s
(5.24b)
where
= (R% «in? 2 _ . . 2.%
RR = (RT sin“e, + Lo 2RTLos1n¢T sino, + hR) , and
(5.24c)

?(0)T = ®(o)r T ™2

[For i > d

-

also find it convenient to write

oR e simply replace RT by RoT’ o1 > o470 €tC. in (5.24).] We

~ ~

20 = dp - dp |= ix(l + RT/RR) cos¢y sing;

i, e Ry/Rp) sings sinep -Lo/Rp}
+jz(coseT + cosop), (5.25)

cf. the exponent in (5.21b). [Again, for the reference vectors joT:*ioR’A
BoT’ etc., we set RT -+ RoT’ o1 > do10 etc. in (5.25), to get 220 = ioT - joR’
cf. (5.27) et seq. below.]

A critically important simplification of our canonical results (5.20),
(5.21) results from the ability to employ "narrow beams" (N.B.), e.g.,
beams narrow enough so that the mutually "illuminated" surface ¢ (= So)
(i.e., the shaded region in Fig. 5.1, for example) is sufficiently small
that the spatial geometry (~RT, RR’ etc.) for source and receiver change
1ittle over the "illuminated" surface region (~ SO). Thus, we can replace
_gT by-BoT’ eT by eoT’ etc., and most important, note that the angle-
dependent quantities in Féi), (5.21b), can also be replaced by the (con-
stant) reference quantities 057 %ot etc. This results in a "factoring"
of the beam patterns, in that they now will depend only on their projec-
tions on the surface about OS’ and not on the coordinates of the wave
surface away from OS. [For details, see Section 6 ff.]
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~

Accordingly, we have,j,T *-ioT’ etc., so that the TSSF (5.21b) can now
be expressed in the ultimately much more usable form (where the results
of Sec. 6.2 are included):

(2) : dxdy § _ A .
FS n.b. IS (4")2R R n QR( lRfO/cO - -\-)-OR’fo) QT(leO/CO.‘YlOT’fO)
f.f. 0 oT oR''z
N.B.

mawle To-(s/c) [(r+)-2ag+T e, ]

. le)(:j.t')e 000 (5.26)

where ¢ = g(r,t') is a slowly-varying function of time, vis-a-vis the
signal in X*)(t), cf. (5.21a) and remarks ff. Eq. (5.21b).
Important special geometries of operation are:
. . . . = n- =T .3 =_‘Z .
I. Monostatic Operation: R @ T: (Lo 0; 8oR ™ BoT> $oR = 2%00T% dor =~dgTs
Rp = Rys(Rog = Ryph Mg = hy)

20y = 2 COS$ 1 SiNO 13 204y = 2 sing r sing 15 2a,, = 2 COSO 1, (5.27)

with associated quantities of subsequent interest (cf. (7.28)):

2 2 2 - .
Z(aox + %oy + aoz)/aoz = 2/COSGOT,
(g/nz)- Zgo = 2(cx CoSd sineoT + Zy sin¢oTs1'neOT - coseoT); (5.28)

Specular: o,r = 0: 2, = 2“0y =0; 20, = 2.

II. Bistatic Operation (R # T): (Lof 0; Egs. (5.24), (5.25), RT -+ RoT’
etc., generally) (5.29)

I11. Bistatic Operation at Snell (or Specular) Angles: L# 0

Lo= (RoT + RoR) sineoT insures (ioR)y = (ioT)y
R R coplanar
8T = %R - ™2 = n/2 insures (i p), = (or)y (5.29a)

~

8T insures (10R)z = '(ioT)z: Snell in plane

eoR
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Then we have

2“02 =2 coseOT

Z(agx + agy + a.gz)/aoz =2 Coso .1 (5.30)

(g/nz)- 2, = ;y[(l + ROT/RoR)sineoT -Lo/RoR] -2 cos6 1 = -2 cosé 1
this last from (5.29). [These results, cf. (5.28), (5.30), agree, as
expected with Eqs. (6.25) et seq. of Tolstoy and Clay [9], who use a

geometry with OS’ Fig. 5.1, as the primary reference system. ]

5.5 Discussion and Critique

At this stage we have carried the analysis for the received scattered
field, X(t), to the point where the central physical problem is to de-
termine the analytic structure of the surface-scatter kernels, Qél),
on the surface r. The approximations and assumptions governing (5.26)
in (5.21a) so far, are:

(i). narrow-band these permit us to separate the signal compon-
(i) §19$?l§- ~ents from the wave surface velocity z: the total
ii). Sne

surface spreading function Féz)(s',s-s') is

doppler
- 8(s-s'), to yield Fél)(s,tl..) in (5.21a),
(5.26)
(iii). far-field -
conditions "Lmaxzmax/ko<< RoT’ RoR » where Zmax = max

(rms) correlation distance of the (illuminated)
wave surface; Lmax = maximum dimension of the
transmitter (receiver) aperture. This permits
us to define beam patterns, which are inde-
pendent of range.

(iv). small surface .
displacements vis-a-vis RoT’ RoR: (part of (iii), really)

(v). "narrow beams," 2 ?
(N.B.) AS°A<<R°T, ROR; beam patterns are independent

of angle variations and can be referred to a
single point (OS) on the "illuminated" wave
surface. [If the "narrow-beam" condition is

e R e R e e A e e A T P I T S R R Y S
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not satisfied, (5.21b) is to be used in place

of (5.26).]
(vi). v = 0: c(z) = C,» @ constant: no velocity gradients in the
volume;
(vii). Qv_f_gy no volume inhomogeneities, random or deter-

ministic, cf. Eq. (5.3b);
(viii). Only local surface scatter interactions: the scattered
field does not couple to the scattering ele-
ments, cf. (5.3c,d) et seq.
the scattering surface is sufficiently re-
moved not to affect the pressure distribution
over the aperture of the driving signal
source, cf. (5.1). (This condition is always
obeyed in practice unless the boundary is
very close to the aperture and the source
level is very high [41, I]).

(x). A non-dispersive, lossy medium is assumed, so that the
Helmholtz equation (5.3a) for the propagating
field is obeyed, with only a frequency and
range-dependent attenuation factor applied
to the emitted signal amplitude, Ao’ cf.
(5.18), in conjunction with (i) above. For
practical oceans this requires fo < 0(40 kHz).

(xi). Slowly moving surfaces vis-a-vis ccfgnd the time-scale of
the injected signal. This permits us to
treat the time-variability of c(r,t') para-
metrically in (5.21) and subsequently.

=
+
=

(ix).

So far, no boundary conditions, and therefore, boundary approximations,
have been explicitly invoked. These, for the moment, are implicit in the
surface-scatter kernels, Qég), including such important factors as re-
flection coefficients and shadowing functions. We shall consider the
Qél) specifically in Section 7. Of the approximations and assumptions
used to obtain the basic (total) surface spreading function ng)’ (5.26),
the most critical are (i), (iii), (v), (x). The others are normally well-
satisfied physically. An important exception could be (vii), bv = 0: this

WV Vi A
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implies that bubbles, and particularly bubble layers near the surface
are negligible in their effects on the surface scatter process. Certainly,

|
L™
in some cases, notably when there is a great deal of wave-breaking ac- t
tivity, bubbles become important. But in many others they appear to be :
"invisible." (This point is discussed concisely in Section 1 earlier.) Y
In our present treatment we shall exclude bubbles, accordingly. J
Finally, our present formulation so far contains several generali- E
zations over earlier treatments. These are: 3
(1). time-variable wave-surfaces, z, with doppler delays, cf. (5.22i); 5
(2). aeneral (narrow-band) signals; L
(3). steered (complex) beams; f
(4). a canonical scattering structure (kernel) which can be de- '
veloped to include a variety of approximation procedures, .
including diffraction effects, for different classes of wave

surface. N
This latter is considered explicitly in Section 7 ff. The specific time- 3
variability of the surface elevation, Z, is critically important. It >

quite naturally provides the expected "tilting" effect in our subsequent
two-scale theory, whereby the small-scale surface is "modulated" by 8
the large-scale or gravity-wave component, without recourse to the ad ﬁ‘

hoc mechanisms used in previous analyses [Sec. II of [4] and Sec. III
of [29], for example.]

o

T

6. Beam Patterns and Apertures

The aperture structure [cf. AT’ AR’ (5.11), (5.6) above] and the '5
associated beam patterns play a critical rdole in the practical applica- )
tion of the theory. We must, therefore, examine their effects in X
specific detail. Accordingly, for our beam patterns in (5.26) we shall ﬁ
begin by observing that, in our postulated far-field "narrow-beam " Q

)

NN.B.) operation [(iii), (v), (5.31)], we can write* >
VP VT = (r a )f “vp =v'o = (r-r_). a . f /c R (6.1) g

T oT % oT ; ~R woR ~ =0’ ~0oR''0"~0 oR : "
*These results are achieved by noting that iT (BoTtI)/|3°Tﬁ:| =z »

o7 t.L° (I i T—oT)/RoT’ etc., in the far-field.
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I where r is the vector distance (on So) of the point of intersection

N of Rjp from 0S (for RoT)' When the main axes of the T- qnd R-beams coin-
N cide at Og, then r = 0 (and Ryp = R o), and the beams are said to "over-
- 0

\}tj lap at maximum gain." (It is assumed that the beam-maxima lie along -i-oT’
‘:_‘ -ioR") Here 3,70 -‘ioR' are dyadics (= second-rank tensors), specifically
S 2ot *d-dgrlors 3gre T Lo Igredore (6.1a)
e

o in which I is the unit dyadic [5,5], (1.3 = 1,2,3). The & 1, d.p. are
_ A ' also called the Fresnel dyadics for j-oT’ ioR" respectively. The con-

- ditions for (6.1) are

A‘i“\:

::'_C:

e |2l pax/Ror << 15 1ar = rargl/Rope << 1. (6.2)
L

To obtain the elements of a ., 8 0., we use (5.24) with O1 > 91> %R T P0R'
.;-j.:: RT +> RoT’ etc. therein. We call (6.2) the "narrow-beam" (N.B.) conditions,
o as we shall see in Sec. 6.3 ff.
( -
.:".:: 6.1 Beam Patterns and Projections

-f{;: We select as a convenient and reasonable beam pattern structure

;C::'} the so-called (general) gaussian beam pattern (see (6.5) below):

N

) - %_2*(21‘)2_71- yior

e Quy) = ge , (6.3)
N

;:':-}.Z where g = beam gain (> 0) and é_is the associated aperture dyadic

"‘.
% i 1 ayy ays

A A = A 2 = p 3 .

i ay 3 a,[F A4 |det al #0; A> o0, (6.4)
'.\:.- bz
-~ A%z 2z

' and where ¢, is a constant phase here, for the moment. Since y=o(L),

:jiiji A is O(L%) and is thus a measure of the physical area of an equivalent

}2;7'- planar _aperture; (the actual aperture may, of course, be three-dimen-

@ sional). The "beam" 0(,\,),) described by (6.3) is not necessarily N.B.

}:Z When the beam patterns fall on the reference surface So of the
-;‘{: wave surface I, cf. Fig. 5.1, the wave number arguments of (6.3) become

LY
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YA

}:‘ those given in (6.1) for these now far-field situations and N.B. con-

"\" ditions. Accordingly, we have

¥

s 1,2rp 02 .

;'::? Q@ (ve=v 73F ) = g (F ) éko[AT/RoT](ﬁ'AoT'r)+1°T(fo) .

b Tler¥erify) = e ;

SRS

RoT = 301" 27" 2ot

s (6.5)
3 ko = wg/Cq

by £l pax/Rot << 1

Yo and

< - LA /RZ T(rar )« A oy e (r-r )Heo(f

. 'y 2 £ 270" R'"oR'!\= =0 oR' -0 R‘'o

i O‘R('-YR'-\-’OR’ o) = 9pifyle

g

s - - - ~

. LIS TR FY TR R I'Y (6.6)
W

o

-‘-:'-'.' lr-Eol max/Ror: << 1

b3
k where E-TAT E-AT’ -QRAR E_AR have the generic form (6.4).

e We chall confine our attention here to elliptical or circular

-':':: (conical) beams. Then, all the off-diagonal elements of a in (6.4)

K iﬁ vanish, and a # b for elliptical cones and a = b for cones with cir-

'N cular cross-sections.* Thus, we write

el

"\j *In fact,é in (6.4) represents an ellipsoid in the volume, any plane
.?_:f section of which is an ellipsoid. Setting the off-diagonal elements of a
NEY

equal to zero (and adjusting a > a', b > b' accordingly) is equivalent to
o N

o a diagonalizing or principal-axis transformation. Our specification of a
S by (6.7) simultaneously, in each sperture coordinate system (OT’ OR) usu-
.ﬁ ally requires that (OT, 0S s 0S R OR) form a plane perpendicular to the
5&"’ (x,y)-plane, cf. Fig. (5.1), e.g., ¢o7=0,/2 (* op=n/2,m, cf. (5.24a))

" More generally, we can always choose the orientation of the coordinate
(s system for the beam at 0T to insure the vanishing of the off-diagonal

" terms in a;, but we cannot, then, simultaneously require this for the off-
diagonal terms of 2p» when the condition of the perpendicular plane is

3 ,. not satisfied: the projection of the (elliptical) receiving beam on So
:'.}\: will be a "tilted" ellipse in the Og coordinate system. An exception

E::: is the case where one or both apertures are point sources, cf. (6.14) ff.
%
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(6.7)

J . . A
'ﬂl)
"
o O
o W
N
o O
N

e Moreover, for analytic convenience here and without any fundamental
reduction in overall generality, we shall henceforth require the receiving
beam (unless it is omni-directional, cf. (6.14)) to be so oriented that
OST' OSR (= 0S if ry = 0), along with O; and 0y form a plane perpendicular
to the basic xy-reference plane of OT’ cf. Fig. 5.1 (with ¢0T =0 or 7/2).
(This is also consistent with the experimental configuration of the associ-
ated experiments [6].) Thus, (6.7) applies for both QT’ OR’ (6.5), (6.6),
simultaneously,* where now a > ag, ap; b+ bT’ bR’ for the appropriate
(diagonal) elements °f-9T,R' We call such beams "perpendicular co-
planar" (= A coplanar) beams.

With omni-directional beams, which are produced by (single) point-
sources, we have for the source weighting, AT = gT(fo)5(§°§o) at a point
., £., S0 that the resulting beam pattern is

-, w0
Q,

L5 585
| 3 l;-
g

2

oy,

I’ i
f:.\{ I 2 Jo

3.{
DA A

By

v ey

2miyg ‘
w dt& = gTe 0 . (6'8) 1
omni Vo §

Consequently, with y given by (iI'ioT)fo/co' (iR7ioR)fo/co [cf. (5.26)
with‘_r;o = 0], we obtain at once the following beam patterns

ik, (i7(r)-1 1) &
0'=T' /'wolT’ =0 |,
gT(fO)e ] -

Q,

omni

gy (5 ge oA do) (gL AN gl) (6.9)

0,

kO = 2ﬂ/Ao = ano/co.

omni

_3:5 Unlike the gaussian beams above, these omni-directional beams are "broad-
: beams" (B.B.) since (6.2) does not generally apply: iT(L)ﬁiOT, etc.,
cannot usually be approximated as in (6.1); (however, see (6.14) ff. in
the case of random surfaces).

*See footnote on page 64.
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N Since r has no z-component, we can set the z-components of A r, B
( -AoR’ equal to zero without changing the projected ellipses r AoT r
j:' (_r;-_r;o) -_AOR- (-'-':'Io) on So. For additional simplification we choose the
)
N coordinate system (OS) so that the y-axes of OT’ 0S coincide, i.e.,
-2 bor = /2 (- OoR = 7). Using (5.24) we readily find for (6.1a) that now
l (¢0T =n/2):
- 0 0
= - 2 . ‘
> 20T 0 cos™ ; swon cos® 3
{ 0 s1‘neoT coseoT sin eoT
\
&) (6.10)
h: - T
N 1 0 0
8]
. 2 . _
T . o 1. (RoTsmeoT-Lo) (Ro sine 1-L)hp
%-, 2oR T Rp R2 ,
A -°=0 OR
¥ 2
", o orsiMorlhp L. (hl)
\ RZ RoR -
o - oR 0
L with
- = . R 2,\%
RoR {(RoTsmeoT lo) * hR} (6.10a)
,:: here.*
s Consequently, we see that, for (6.7),
1 0 i 0 1 0
) A = 2 4 2 2 . 2 1 _ 2 t
: Bor = [ 021008 Partreos grtin o 1 X | < | O 2rler) L | (61
: 0 X E X E

alby
[-1]
3
[« 8
wn
o
ct
>
[1]
(nd

~ e

(L%

W *We note that det goT 0, but det a 3,r # 0 (unless R @ T, cf. mono-

. static operatmn), also 1oT a o7 = 0» etc.s cf. (6.1a): -oT minimizes the

’ scalar i oT -2 oT " o1 (=0), etc.
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".’ T(6 T) cosze *+ by 24 ine T)cosze = 0). (6.11a)
I .

:\ Similarly, we_ get (3_:0 =

N 1 0

3 )

{ 2 2 2 . _ 2

A o o1 _(" L L() ] - bZ(hR ) (RoTsmeoT Lo) ;

> R LA RR____ 11 .. RRoR. . "R '

- 1

s !

' L J (6-12)
§ 1 0 , .
) _ 2 ) 1

& 0 %Coritefe) i

: e

e where now

o4 L. 22 .2 Lo 2

- 200 Ln) = al [1 i (RoTsmeoT "o) ] . bz(“R ) (RoTsmeoT Lo) G o)
- 3R\t d R ROR R RoR ROR

" (6.12a)
{

» From (6.11), (6.12) we see at once that the T and R beam patterns form (a

continuum of) elliptical projections on the mean surface S0 (=<e> = 0), e.qg.,

"

‘AL 2 4 2 2 . >0) -
XAt _rlso x“ + ap(8 r)y" = constant (> 0) ; (6.13a)

A . 2 2 2 _ > 0)- -
r AoR _["S X +aR(eoT L,hR)y constant (Z 0); r 0. (6.13b).

0 0

6.2 Remarks

A variety of features of these beam patterns is to be noted:

(1). The gaussian beam patterns [(6.3), (6.5), (6.6)], which have
no "side lobes," can be well approximated in practice by the
beam patterns produced by parametric transmitters (and re-
ceivers), which likewise have ignorable side lobes.

(2). The use of these side-lobeless patterns provides significant
analytic and computational simplification, particularly in
the evaluation of scatter intensities, cf. Sec. 8 ff. These
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"lobeless" patterns also enable us to distinguish, and avoid
confusion with, the diffraction-grating patterns produced by
scattering from any swell components in the wave surface (a
point noted earlier by Tolstoy and Clay, p. 197, [9]).

(3). A far-field condition is also required here, cf. (6.1), to ;
enable us to replace the various angle-dependent quantities |
(e.g., &) with "central" values (g ) defined at 0g (and OS')’
and thus greatly simplify the subsquent evaluations. Other-
wise, the exact expressions f°r.i7* Jdg» etc. must be used,*
as in the case of the omni-directional beams (6.9) with bi-
static operation* (R # T).

With mono-static operation (R @ T), however,_&;iz(hT-hR) =
&o = 0 (by choosing O, at g = 0) and then QT|omni = 953
QR|omni - G-

Also, if either transmitter or receiver employs a "narrow-
beam" (N.B.) while the other is "broad-beam" (B.B.) like
C.l.R omni 1M (6.9), for example, the narrow-beam is always con-
trolling in the product GT'Qk omni* Then v = '¥R7¥oRAé
Eq. gs.l), (£,=0) specifically in (6.9), e.g., ip(r)-ip =
(r-'-a-oR)fo/CoRoR’ so that now*

Qg # Sp(Fe - ok Er)Fon
omni R''o (6.14)

Rp = Eq. (5.23d), R g = Eq. (6.10a),

when, say, CLT is described by (6.5). Moreover, it is no
longer necessary that OT’ OS’ 0R form a plane perpendicular
to the xy-plane, since the projections of an omnidirectional
beam on a plane are always circles.

*Actually, if the maximum correlation distance of the (here random)
wave surface is small compared to the minimum distances to the trans-
mitter and receiver, the "illuminated" portion of the surface is split
up into essentially independent régimes, each of which is in the far-
field, so that Eq. (6.14) for omnidirectional beams can be employed.
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In effect, the far-field condition here requires that the
/EFEE; of joint "illumination" by the transmitter (and "viewing,"
by the receiving beam), over which the resultant beam pattern
magnitude is significant, be small compared to the distances
RoT’ RoR' Quantitatively, this may be expressed by

Yarea; = /?%b (= vadr) << Ryr» Rops (6.15)

where a, d are respectively the major and minor semi-axes of
the elliptical projection on So’ at some level, -Nbdb, down from

the maximum joint beam gain 979g> cf. (6.17), and III, Sec. 6.5 ff.

A reasonable generalization of (6.5), (6.6) is to replace the
constant phase terms ¢q, ¢p by the linear terms (in'x):

where now v is given by (6.1) in these N.B. cases, and TR

has the dimension [L].

We note the dependence of the beam patterns on frequency (~ko);
this is a direct consequence of the definition of beam pattern
as the spatial fourier transform of the (physical) aperture
weightings Angi), ARQQ, ), cf. (5.6), (5.12), (5.13). [Tolstoy
and Clay, however ([9], Sec. 6.3 et seq.), do not explicitly
include this frequency dependence, which leads to a somewhat
different interpretation of scattering intensity.] Moreover,

as (6.3), (6.5), (6.6) show, the beam patterns behave as ex-
pected vis-a-vis aperture size and frequency. Then, as AT’

AR cf. (6.5), (6.6), are made larger, the beam patterns become
sharper or "narrower." Similarly, as the signal frequency (~fo)
is increased, so also do the beam patterns contract: as wave-

length (Ao) is decreased, the (fixed) physical aperture becomes
(acoustically) larger. In addition, the beam gains [gT(fo),
gR(fo)], and phase parameters (¢T. ¢R), are also frequency-
dependent.
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6.3 The "Narrow-Beam" Case

In order to simplify the evaluation of the Total Surface Spreading
Functions (TSSF's), (5.26), as noted above we must use beams (or at least
one beam, here QT) which are sufficiently "narrow" that their effective
projections on the sea surface (specifically on So)’ are invariant of :
angle variations over that projected area, cf. remark (3) above, Sec. 6.2. k
These projections, of course, depend on the surface distance r, cf. © )
Fig. 5.1.

Here we shall give the conditions relating aperture size (~AT, AR),
frequency (~ko), and distance (RoT’ ROR) which permit this replacement
of angle-quantities by these single values established at 0S on So' This

is what we mean by "factoring of the beam patterns." Accordingly, we v
begin with the elliptical, l-coplanar beams of Sec. 6.1, where Lo = 0 :
so that 0S R OSR coincide. From (6.5) and (6.6), with (6.11), (6.12), y

we can wri{e for the combined gaussian beam patterns

O

20
- L2 (axP+By?)+ik (Cx+Dy)

EQRQT = gp9.e . (6.17)

gauss

where (6.16) is used, and where

A A A A
= —-—T— __R. . = 2 L 2 L o
A = ", + 7 B =ar( q) " + aple 1l Lshp) " (< A), (6.17a) '
R

C= (-9-0T '-&T)X/ROT * (9-0R .'&R)x/RoR;

(6.17b) o
D= (a3, L) /Ro+(ap"d) /R X
=0T “T'y’ "ol -«0R “R’y’ "oR N
- W
2 .2 H

with a7, ap given by (6.11a), (6.12a).
We distinguish two principal geometries:

A. Backscatter Geometry: R@T (identical beams) \

T S 2 a2
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In addition, with circular (conical) beams b, = a. and thus a%(eoT) =

2 2 T 7T
{f ajcos eoT’ cf. (6.11a).
o
(\
,3h B. Forward Scatter Geometry: Specular Direction (identical beams)
. . . . 2 2
- In this case (5.29) applies and again aR(eoTl...) = aT(eoT),
(W (6.11a), with
SO
> - 2 2y, - A2 2 2, _.2
s A= AT(l/RoT + 1/R°R), B aT(eoT)AT(l/RoT + 1/R°R) aT(eoT)A (6.19)
\-l
{ . for these identical beams. Here, however, RoR # RoT usually.
- For the somewhat more specialized beam choices of the Roderick
,E; experiments [6], where the receiving beam is omni-directional, cf. (6.9)
35 and (6.14), we have (6.17) for the combined beams, where now Lo =
°® éoR'BTR/RoR’ 47 # 0. Thus, the parameters (6.17a,b) of the combined

beams are now

- _ 2 . _ .2 2 .

A=A/Ryp s B=aglp)A/Rop s
Y . .

S C = @7 )Ry * (fRgp)sing (6.20)
-

. ) oTsmeoT lo)}

o= et + LI o

X
13 For the A-coplanar condition, ¢L = 0, consistent with ¢oT =n/2, cf.

fj Fig. 5.1. However, since the receiving beam is omnidirectional, (6.14),
v:f this condition can be relaxed, and ¢L does not necessarily vanish. For
o the back- and forward-scatter geometries of (6.18), (6.19), we find that
:é (6.20) reduces to:

l-'\

C. Backscatter Geometry (Gauss x Omni): ¢, =0

>
|

2 ., = Al . - .
= Ar/Ryrs B = aT(eoT)A’ C= jLTx/RoT’

(6.21)

- 2 2
zTycos eoT/RoT + Cos 0

o
il

oT"

R A RYOR .'-f.‘v 3 .bb"'
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D. Forward Scatter Geometries (Gauss x Omni),
in the Specular Direction

Here we have oL = 0, 9T = /2, O T T and A, B, C, D are readily
found to reduce to (6.21), provided we invoke (5.29), as required for the
specular direction. Off the specular direction, of course, C and D
differ from (6.21).

Our next step is to relate an effective beam width, Ag, to: (i)
the beam parameters (AT’ ko’ ...); (ii) the "narrow-beam" conditions (6.2)
above. This is done by choosing some distance (rb-max) on So where the
maximum projection of the beam falls to b'1 of its maximum value (gT),
(6.3), in the manner of Fig. 6.1.

Figure 6.1, Geometry of effective beam width, Agy, in the far field,

"b-max/Ro7 << 1» Showing illumination’by "short" pulses.
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2 For the gaussian beam (6.5) we get (in the far-field)

{:

e _ _ 1,2, (.2 2.2\ 02 ¢ .

B |QT(xRb-xoT,fo)l = gp exp (- FkCAL(x+ar(6 1) yp)/Rop) = g/b.  (6.22)
! |

o Taking the largest projection on So’ viz. yp, (aT< 1) and solving

‘, (6.22) for y, /R 1, x, = 0, we get directly

o ~ _ 2 2%

% Yp = Thomax/Ror = (2 109 B/Agag(o p)g) < 1, (6.23)
’.'j

{ where we recall the far-field condition (6.2). From the far-field

_..‘;;I geometry of Fig. 6.1 it is easily seen that the effective beam width is

'_., now (in the far-field)

) >

o -

X ABT,b = ZybcoseoT R (6.24)
5

K" . s

ol subject to the condition

SN

Q. . I . %1.b

o Yp = Tp-max/Ror = 72 109 b/A;/ kar(e r) = Zcost 1 <«<1, b> 1. (6.24a)
i 2 2.2

"‘-' i = . 3 /2

.. Here (6.11a) gives aT(eoT) ag €osé ¢ (cos 8,7 * bT/aT) sin eoT)

[L"

(= ay €0s8 1 for circular beams, a; = bT)‘

)
A ;
:; E. Example :
:3! These data are obtained from experiment [6]. We have
% w
£ a8, = 5° @ -10 db (:b = 10) = 8.73- 1072 rad.
o9 ©y, =0.358.  (6.25a)
:j 0,7 = 83° = minimum grazing angle used.
S
129 - -
L J which is not very small. We should have Yp < 0(10 2) comfortably.
o Since hy/cos6 1 = R 1, we easily find that for h, = 28.7 m, R . = 235 m,
3: and - ry = 84.3 m, from (6.28a). (This is approximate, since 9b, (6.25a),
:.'f-: does not obey (6.24a) very well.) The effective bandwidth of 5° at -10 db
.’ (from gT) is measured at 20 kHz. This permits us to estimate the equi-
:}. valent aperture cross section AT’ under the assumption of fully circular
:_‘.2 beams [aT = bT (= 1)]. Since
o
‘-
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AT = %{aTkOABT,b)Z 1ogeb (6.25b)

from (6.24a), we find that at fo = 20 kHz, or a, = (3/40) m, :'AT = 6.16 m2,

(b = 10), cf. Fig. 6.1.

Now }b ~ 0.36, cf. (6.25a), does not very well satisfy the far-field
requirements. To overcome this critical defect (which otherwise greatly
increases the practical complexity of our results, vide Sec. 6.2, and
above), we can achieve the desired effectively narrow beams by using
suitably "short" signal pulses, so that only a comparatively small por-
tion of the projected beam area on S0 is illuminated at any given in-
stant, cf. Fig. 6.1. If T is the pulse duration, then

= ZTSCO/COSGOT; e AY‘ /R0T<< 1, (6-26a)

> A
"b-max ~ “"b-max b-max

as required, where ZTSC
effective beam width is

o is the pulse distance in the medium. The new

BB = Or coseoT/RoT = Z'tsco/RoT. (6.26b)

b-max

Thus, for = = 1073 sec, Yy _max =24.6 m, and Arb-max/ggT = 0.10,

which is better. Still better are pulses with T = 4 10 ° secs, say,

as then the far-field condition becomes Ary . /R - = 0.04 <<1, acceptably.
However, there is a 1imit to how short a signal duration can be

tolerated before our postulated "narrow-band" conditior [(5.31), (i)]

breaks down and we must then account for the fact that our apertures are

frequency-variable, i.e., they act like (linear) filters, cf. (5.6). We

discuss this point in Sec. 6.4 following.

6.4 Beam Convolutions
To appreciate the filtering action of the aperture in its response

to signals of finite bandwidth, let us consider (5.9) and (5.10) once

more, now with driving signals of arbitrary temporal structure. We con-

sider for the moment the unscattered field ay. Instead of (5.10) in

the frequency domain ( now with So * s), we can write in the time domain

the temporal convolution




NS

e,

lb~

..........

Ay~ L dt J‘v Ap(Est-t+t*(8))S, (v.5)dEs  t* = dr-g/c - R L/c..
T (6.27a)

Alternatively, this may be expressed, for Sin(r,g) =S, (t): uniform

in
drive, as

S T 2 ds
*y ~ IBr € Sin(z)lp(s- (irdor)/csss) 27 » (6.27b)
1

where Sin (EE?J is the (amplitude) spectrum of the applied signal, cf.
(5.12), (5.13). Equations (6.27a) and (6.27b) may be described, func-

tionally, as

(6.27a): ay - aperture weighting ® driving signal waveform;

(6.27¢)
(6.27b): T F.T.(beam pattern x driving signal's spectrum)df,

where ® denotes (here temporal) convolution, and F.T., the fourier transform.
For narrow-band signals (about So = wao) we have Sin(s :?o-s) s
Sin(E%T)’ where S, # 0, |s| < af<< f,- Then the general relation (6.27b)

becomes

. (t-R /c ) . . S'(t'R /C ) 1
0 ~e° oT’ %o jBr Sin(%;?q O (Lip-i 71(s #sg) e 35, )e oT’ %o %%T‘

1 (6.28)

Provided sin is spectrally (considerably) narrower* than Q ,QT may here
be considered essentially constant (in s') vis-a-vis Sin’ and so (6.28)
reduces to
s(t-R_+/c.)
- 3 _2 . . oT >0 _di‘
ay ~Qp([3;-d,71s,/c435,) [Br Sip(s/2ni)e o7 o (6.29)
1

which is just the form of (5.14) earlier, as expected. This is the "narrow-
band" postulate of our analysis, generally.

*We may set ko-* k', (k'<(<)ko), in (6.5) and specifically compare
([T with S, to establish a workable quantification of the term "narrow"
here.

in
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e Accordingly, as long as the pulsed signals of Sec. 6.3, cf. (6.26a),
.).‘ are not too "short," i.e., as long as TS afL of QT’ we can "factor"

r the beam pattern and signal spectrally according to (6.29). The "scanning"
¥ :::.::; of the beam projection on S0 in Fig. 6.1 is then automatically accounted
-7~ for by (5.26) in (5.21a) through the spectral structure of these narrow-
,. band “"short" signals embodied in Sir. (s/27i).

S

.f:-., 6.5 Beam Integrals for Scatter Intensities

When the narrow-band condition for the signals is obeyed, the beam

‘.» pattern Q and the signal spectrum, Sin’ "factor," as in (6.29), (5.21a),
*
::: (5.26). When in addition we have gaussian and/or omni-directional beam
\'_'::: patterns of the type (6.5), (6.6), and particularly here, (6.17), in the
N
-.::.; far-field, it is possible to evaluate a variety of integrals over S,
[ which arise in the evaluation of the coherent and incoherent scatter
:::'j?. intensities (cf. Section 8 ff.). We summarize these results here.
;:_::f: The integrals in question involve the beam pattern products Q.,QR =
b G‘TR‘ With the help of (6.1) in (6.16), we see that (as long as one of
{ the beams is "narrow" in the sense of (6.2), now with_r_‘o = 0)
250
~ d_ = .« 2 ') . 2 .3 .
A T 7 kot 3o1 " &r/Rors Pp kL tdgg " Ap/Rops (6.30)
N
so that from (6.5), (6.6), we may write directly
o
LN "
% a0 = - 2oL Brge Z+ikr - brp
i 10 =0 = grgee \ (6.31) -
l,
.'_
" where from (6.11), (6.12)
:::,:' -A A N
.f"".': T R
" 7t 0
s . Ar . Ap - RO, RS,
Bip =5 A, +—--A =170 °
RS ~TR R2 0T R2 =-oR 2 AT 2 AR ’
o L% —
! oT oR 0 21(0g1hz * 3R(0orNoly) 2
.j::; i oT ol:
-3 (6.32a)
3 "',‘,1 [A 0
W ) (6.32b)

W ™ o W

o % L% AW
™ L X !ll!.i. S el $ DA A&
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Also, we have
bTx = Eq. é?.l7b)
= a o 5 LA = = =
2R = 201 "=1/Ror * 20r "=r'Ror =] b1y Eq. (6.20)
0 0
= -
lTx/RoT * le/RoR
2 , . 2 .
g, 8 _+2 - -
| Fpyces oTH7,5 10,7088 o e 1. (RoTsmeoT I " R (Ryrsing r-lhpte,
ol oR oR
0
i (6.33) =
from (6.10), where we set the z-component of ETR to zero, since generally
I lies only in the (x,y)-plane.
The integrals in question are
koo
~ o © ikozg.o.-r- -2— —I‘.QM.—!‘
12(20a2) = I-m O.RT(_Y;I)QL‘I f‘wg(é_")ﬂm(ﬁltﬂ}_‘)*e >
(6.34)
ar=r, -1,
Il(go) E 12(2M=0); (6.35)
and o
I30ar) = [ Bgrle grle *ar)*dr; - (6.36)

(Note that since_;l,ér have no z-components, we can set Qio)z = 0 through-
out in what follows.)
Since QRT’ (6.31), are (symmetric) quadratic forms exponentially, at

most, over infinite intervals, we can use the well-known

of [45] (in vector, dyadic notation):

S e A e e

.

TN (T4 A " TN 'R " L]
RTINS XSS N s .." \. ‘\.\" ) v

result, Eq. (7.26)

Dbl e Boldomion




N T A-1
igeu- su-A-u nf2 - 5£°A "-¢
(g) = e~ BT %g -0, 2= = (6.37)

[u] = [det AT

o

P -

where A
g-é-gf _t_]é\_u., where the elements of the matrix A are the various (xx, xy, ...)
components of the dyadic }.\: Thus, det A = det :ﬁ_\_, etc. Applying (6.37)
successively to (6.34) with (6.31) yields after considerable matrix manipu-
lation (on replacing dyadics by matrices, as convenient)*:

dyadic form of the inverse square matrix _l:\:l, e.g., £-u ~> Zu;

(9:90)%27% - Y2a b )(E"1+ L 6™ 1H) (24 -bp)
[ = TIR e 2'°072TR7IZ T 16 22 2MZ07RR (6.38)
2 .4 3 , )
kg Vet GE

~ _ ) 2 .
det E = AB + (Bdll + Ad22) + (dud22 - d12) > 0;

IS I [
G 28Brp - 2BrpE Brr = & (6.38¢)

¥
m
oo
-
=l

El+ e, | (6.38d)

and only the (x and y) components of Zgo-gTR are used here.
Equation (6.38) is an exact result. Note that the exponent of (6.38)

*Al1though -&TR in (6.31) is diagonal, :QM in (6.34) is not--hence the
utility of the matrix technique here.

\\\\\\
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e
R is _independent of frequency.* This occurs here because of the explicit
(:kﬂ frequency dependence of the beam patternsin our formulation [(6.3)-(6.6),

a:f and (6.31)], which is required, realistically.

< Py ~ ~ -~

:’3:;; For 1,, (6.35), we find that since ), = 0, # £ = B¢, and G = 7 Bp,
e H= 2L, so that G = 2873 = 2671, and since det (L 82) = (1/2)7 det?Bry,
}7) we get directly from (6.38)
-
i - - « Tko2a,-Ar

S I (g) = f_maRT(I1)951 f_m d(arflpr(ry*ar) e
x ‘ .

o P o T

N (g )? 22 o T tmERCetw) [ ]
2% %’ 2 1{goRrr) | - (6
1'?1_' k AB
I.:.' 0

af}

!Q; since det Bep = AB, cf. (6.32b). Equation (6.39) is also exact.
20 For I, (6.36), we get from (6.31)

2 3
\‘:

0.

<2 (979p)%n - 745 [ex) 2+ (ay) 28] -k prp-ar
{ I.(ar) = ———— e (6.40)
{ 3\= 2
o kg /AB
Ea

Bl

.-:a

Tt ~

;:j We note the explicit role of the phase terms (79TR (6.33)) [cf. (6.5),
. (6.6); (6.16), (6.17)] in the above results (6.38)-(6.40). Again, only
)

:f: the x- and y-components of ngfgWR, QJR:(6'33)’ are used here. Finally,

LY
':$2 because §¢R is diagonal, there are no "xy"-components in the exponents N
N of (6.39), (6.40).

[

#:: A. Approximations

>

:;Q Let us consider the second (square) matrix in the exponent of (6.38), 12:
'y
SO | 213 2a o al1.,n 1z 2-12 - 31z aea-1

o HE “H = (E "Byp + EBrgE ")(Brp - 2BrpE "Brp)(Byg + E BrpB)E ", (6.41)
S cmeeeeaa-

$£$ *This agrees with Tolstoy and Clay [9], cf. Eq. (6.74) et seq. therein.
o, - -

1{5 However, we note here the ko4 factor in (6.38). rather than the ko2 factor
i;; of Eq. (6.74), [9]. The formulation of Tolstoy and Clay [9] does not in-
N clude an explicit frequency dependence (~ko). (The insensitivity of the

~

zj exponent to frequency stems generically from its dimensionless character.)
iy

'l

[ A
oo

SIS T Y

Cd'™) ] TP Y N e T v TP R T S A R R ) S L
% W10 N W W VR N NG W N T s 0 PO S CX R TR LS (R R
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4:.
i’ If
- dy1s dpy>> A,B, cf. (6.382) <~ E>>Brei and | E =Dy | (6.42a)
k: If
-1 - 42 . 22 |
: E > Brpe (det By = djydyy - dpp7 0) 1>>8p |
\ . 1 (6.42b)
& - HGH ™t = O(BrpE ) << E7
X
‘
b And we have
. - - . - 2
.. s det GE = det EBT = det E det B, = AB det Dy = AB(d,;d,, - d},). (6.42c)
35 Consequently, (6.38) now reduces to
;
[ 2, 2 1 o-1
. Ly(2,-bra|%ar) - (g7p) "2 o~ 21%207Brp)By " (2270rp)
~ 2'=0 =TR| oT k4 /B(d 2 (6'43)
N 11%27912
= D, = -d2
X det Dy = d,,d,,-d7, (> 0),
o
o

which has "xy"-components in the exponent, since éM is not usually
diagonal, cf. (6.39), (6.40) above. The inequalities above are reasonable
provided the grazing angle SoT (=n/2-e°T) is not too small, i.e., 0,7 is

* not too close to n/2. We must, of course, test (6.42a)-(6.42c) for actual
geometries, as used in the experiments of Roderick [6].

A.1. Change of Dimensions

Finally, we note that if k2 is absorbed into A, B, and k into C, D,
of (6.17), (6.17a), i.e., A, B = O(L'z), C, D =0(L 1) dlmensronally, then
= I (6.39), and I, (6.43), replace the k4 factor by kg, while I3, (6.40),

"‘ '. l‘

; has no k2 in the denominator. Furthermore, in (6.39) we must then also

o insert a factor k2 in the exponent. In this form the dependence of the

S effective aperture size on frequency is disguised.

4
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B. Explicit Forms: brp, 23079¢R

The explicit general forms for 9¢R are given here by (6.33), for N.B.
patterns, in the usual far-field state. For the more general quantity
2g,-brg we combine (6.33) and (5.25), to obtain

23"brg = A, (1 + Ryp/Ropleosersing - (2, /Ryp + fo,/Rp)}

2 .
: . . br,COS" B+ Ly, S1n6 rCOSBoy
+4, ;(1 + Rop/Rop)sine rsingr =L /R o - -

. 2 .
(R rsin6 --L) (R +sind -Lghpt
ol ol ol oT RRz
+ [1 - 2 ]“Ry/RoR + 3 (6.44)
oR oR

Equation (6.44) can be simplified somewhat, depending on the geometry
of the (N.B.) arrays employed. For a vertical array we have

(i). Vertical array: & =10, (6.45a)
(ii). Horizontal array: 2., = { [ { L (6.45b)

“H  =xx  =yy

and for a combined horizontal-vertical configuration (to form a beam of
effectively cylindrical shape), we can superpose (i) and (ii) to get

(iii). Cylindrical Beam: L= Syt =it lyly + 1212 (6.45¢)
=ikt j_zzz, (2y = 0: (6.45d)

horizontal array axis on x).

Accordingly, we can set ly = 0 in (6.44) for "cylindrical" beams.

In addition, we note that the maximum effective dimensions of the
array are small compared to the fundamental distances RoT’ RoT’ cf. Figqg.
5.1, as required by the far-field or Fraunhofer condition imposed through-
out the present analysis. This means that gx,y,z/RoT’RoR<< 1, so that
for transmitting beams directed in the yz-plane (e.g., %t = n/2), we see

that (6.44) can be further simplified to

D
. il

Al Bl A L .. AL B e
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). ]
N 2
1 8
'z.
'\'
N : : Lo
Y s s _ - o . -
= 225-brg * 1xCie/Ror - fRx/Ror) *dy §(1 ¥ Rop/Roplsind oy - g
{ oR
. “Ty - 0) . (6.46)
N . .
ol Also, from (6.33) we have here 'QTR given by (6.33), with lTy = 0. Whether
L‘ or not we can set -t-’-TR = 0 in such expressions as (6.40), or even (6.39)
N and (6.43), will depend on the components of -g’TR and -QM’ of course. .
.g: In the present experimental situation [6], where the receiving beam
L]
oY is omnidirectional, (6.20) applies for brre €.9.5
N Brg =40 * 40i with @gr-dp)y = fpy
s (6.47)
..‘.} A L = 2 1
N (EoT lL-T)y !LTycos eoT * jLTzs‘meoTc“’s‘eoT ’
®
= which can be further reduced on setting &, = 0, cf. (6.45d).
AT Ty
2
v C. Projected Beam Area on the Reference Wave Surface (<z> = 0)
o8
5 From (6.17) et seq. it is clear that the composite beam pattern pro-
_,_, jected on the reference surface SO: <> = 0 is a series of concentric
'-;l' ellipses, with the most intense beam levels occurring at x =y =0, i.e.,
- at Og, cf. Fig. 5.1. Thus, if b~ is the level of the beam pattern (b > 1)
-
o from the maximum, then the corresponding ellipse is described by
22
o 2 . o2 1, - gy
X Axc + By =21log b, fromb "~ =e s (6.48)
2
J -
j:-l (where we have absorbed kg into A, B, so that A, B = oL 2) are inverse
3 areas). Rewriting (6.48) as
:»
o 2 4 |2 2 2
23 5 + z=1,0or Loy, (6.49)
" .——9—2 0 / g__]_'g_b ax a
.
s we recall that the area of this ellipse (on <> = 0) is
b
{a A = na_a (6.50)
b ’
0. Xy
: so that we have directly from (6.49) in (6.50) here
-
b
’d

15NN L WO
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o |
|
(i Ab - 2nlogb . (6.51) |
A /RBo) i
b _ . :
R As we shall see presently (Sec. 8), the factor 2n//AB shows up in the ;
"\ calculation of scattering intensities. From (6.51), accordingly, let us 1
choose b = e, or log b = 1, i.e., we select the el 1evel of pattern ‘
< relative to its maximum: ' |
5 i
o 2n i
{ . Ay = ———| (6.52) ‘
/RB(5) ‘
-2 |
f'\ Thus, A1 is the projected joinf beam area on;Sc at the e'1 level. This
;' particular analytic result, of course, stems from our original choice ‘
}:.;; of gaussian beam pattern, cf. (6.5), (6.6), (6.17).
-
15 D. The Reference Surface Area, AREF
{ The reference surface areas, A.REF’ which are employed in the defini-
"'\r‘, tion of the scattering cross sections (2.6), (2.19a,b), are arbitrary and

may be chosen conveniently to simplify the result. In conventional prac-
N tice (cf. [1]-[21], except [9]) the area AREF on the reference plane So:
"') <>=0 jointly "illuminated" by the projected beam patterns, QRT’ is
::): determined under the assumption that O'RT’ as projected, is uniform over
-:j;: the reference area and zero outside it. The associated area, AREF’ is
:i:: such that AREF» 1 (>>22 S), where 2 ,2 ,§ are respectively the correla-
"'." tion distances of the large- and smal] sca]e wave surface components, cf.
BT Sec. 3. Thus, since from (6.3), (6.17), and Sec. 6.3 above, we have
\ specifically*
¥
E: ‘ i - %(Ax2+By2)+iko(Cx+Dy)
. oy 5, ~ 1% ’ 50
X
"-:g so that the beam-pattern integral I (0), which appears in (8.1), (8.8),
W etc. for the calculation of M ) >(0), cf. (2.6a), becomes
(R
™ *With (6.17a,b) for A, ..., D, where we have absorbed the kz-factor
X into the A, B, which in turn now have the dimensions [L~ ]
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oo

2 2 .
I,(0) = |Q,-] “dr. = (9:9,) A -2 uniform beams (6.54a)
3 luniform ]~» RT 1 TR "REF

%{ngR)ZAI: gauss beams, (6.36) ) (6.54b)

Here Al = 2n//AB(6), (6.52), namely, the projected area on S, of the
gaussian beam patterns, (2.11), (6.17), etc.

Similarly, we find that the associated integral [in (8.1)] becomes
(with the help of (6.37))

a
o L
p(2ko%g_yy) = If Opr(rygr(ryraryve M T atn)
2 2
22 ) (2a_.)
= 2 2rn _1 ( ox oy
(919 Prer | 12— e"pg sz[ 2 2 ]%
o’gy’ay o ‘gx gy
(uniform beams) (6.55a)
A ) )
22 ) (2a_.)
=1 2 2n 21 ( 0X oy
2 Ala%R) 7 — e"pg sz[ 7t ]g
o gy 9qy o gx qay

(gaussian beams). (6.55b)

Accordingly, our choice of reference area is

AREF = A1/2 (6.56)

here. As we see in Secs. 2.3-2.5, this brings our results into agreement
with corresponding portions of earlier results, viz., various separate
and joint determinations of the large-scale and small-scale scattering
cross sections.

6.6 Summary Remarks

In Section 6 we have developed the role of the beam pattern in con-
siderable analytic detail. Particular attention has been given to the
gaussian pattern (6.3), because it approximates well the patterns pro-
duced by parametric transducers. Included also is the omni-directional
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.

" . pattern, (6.8), (6.9), which is used in the receiver in the accompanying
):_ experiments [6]. The product beam patterns,QTR, are always "narrow-beam",
'{ from a combined choice of geometry [cf. Fig. 5.1] and injected signal

J\_ waveform [cf. Sec. 6.3].

s We note the following in summary:

\._ (1). Projections: (i). r, - 0: axes of the beams coincide at OS’
o cf. Fig. 5.1.

- (i1). Elliptical beams, which are elliptical on
e S(:<z>=0). Here Oz, Og» Op form a plane
\ ' ) perpendicular to the plane of S, e.qg.,

::2{ o7 = 0,m/2, and-‘-<1>oR = w/2,m.

"f; (iii). Since the receiving beam is omnidirectional
:'.: in the experiments, we can relax the planar
’.1 constraint of (ii) above, cf. footnote ff.
:;':«; Eq. (6.6).

\;‘ (iv). The projected (composite) beam area on the
\ reference surface S (:<z> = 0) at the el
{ level vis-a-vis the maximum (at x=y=0) is
2 A, = 2n//RB, cf. (6.52).

j;l; (2). Narrow-Beams (N.B.): this requires far-field geometries and

- possibly gated (modulated) carriers [Sec. 6.3].

(3). Explicit dependence of beam patterns on frequency [Sec. 6.2].
;:,;: (4). Explicit results for N.B. cases in the forward and backscatter
:;.': régimes [Sec. 6.3].

o (5). Concept of "effective bandwidth" [Sec. 6.3].

.' (6). The role of the Fourier transform of the beam pattern with the
::: driving signal spectrum [Sec. 6.4], or when beam and signal

1 waveform are factorable, cf. (6.29). (The gated signal should
1 not be so short, i.e., its spectrum so broad, that (spectral)
sf factorization is not possible. "Beam-scanning" of the (wave)
N surface is automatically accounted for here.)

e (7). Vvarious beam integrals needed in the evaluation of scatter

N intensities are carried out [Sec. 6.5], which include the

".h effects of the phase terms in the complex beam patterns, cf.
4_: (6.3).
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In general, the above results are independent of propagation and geometry
provided
(i). the medium is not dispersive, e.g., fo < 0(40 kHz), only
absorptive at worst;

(ii). vc = 0: negligible velocity gradients. [However, the effects
of vc # 0 can be accounted for by suitable reconfiguration
into an equivalent geometry-~-to be considered in a later study.]

(iii). far-field conditions are valid, so that one can speak properly
of beam patterns, i.e., Fresnel corrections are negligible.
With the results of Section 6 we are now able to obtain explicit
expressions for the desired scatter intensities [Sec. 8], once the ap-
propriate local scattering model is implemented [Sec. 7 ff.]. See also
Section 5.5 for a summary of the basic structural conditions.

L. Surface Models: General Scatter Intensity
From (5.26) in (5.20), (5.21) we can now write the received wave-

forms X(t) whose intensities we wish to determine for the back- and
forward-scatter cross sections which are the principal aim of the present
study. Specifically, we have (the complex) waveform

5 3Ky = e (k td
(o = 1 x(F)(e) = TRt Syplsrzn R Ysle(rat),. | et S5,

on i
1 (7.1)
where the Total Surface Spreading Function {TSSF) Fék) is now
~awlc T - S {(r+g)-2a +c T ]
, (k) . | (lR Q(k)(r' t')e 000 Co L&' dxdy
Y S s RI° =7 (41)°R R on
e 0 "/ ToT oR"z
(7.2)
o0 subject to the various approximations and assumptions noted in Secs. 5.5,
%:; 6.6 above. The beam pattern product.ORT is given explicitly by (6.17),
Et} (6.31) here, cf. Remarks in Sec. 6.2 also, and t' = t-atyg, L' = rte,
ot cf. (5.22a,b).
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7.1 Wave Surface Models

As before, cf. Sections 2.1, 3.1, we shall employ a two-component wave
surface model, consisting of the single gravity-capillary wave surface as
one component (G), on which rides the soliton-ripple contribution (S),
as sketched in Fig. 2.1 above. For later analytical convenience (cf.
Sec. 8.6) we shall in addition split the former surface into a sum of large-
scale "gravity" (G) and small-scale “capillary" (S) contributions, so that
the surface elevation at (r,t) on the reference surface, (So) is, in detail,

&rot) = 1,leg(est) + o ()] + pglratheg(n,t) |5 with o = 1,20, £o = ngeg

(7.3)
where ﬁG is the normal to the G (= g + c) surface, viz.
~ ~ - - '1: C + ’1: C - :l:
- A . % = f=X’x -y’y =z . 9L
D = e + iy lz)nz}G 3 » T, T 32 etc
togt by G (7.4a)
However, for the present we use the two-component composite surface
g(r,t) = i5g(r.t) + nglr.t)eg(r,t) » (7.4b)

reserving to Sec. 8.6 ff. the further dichotomy of L into a "gravity" (gq)
and a "capillary" (c) component.

In our alternative approach, as noted in Sec. 5.4 above, we obtain the
following specific results for surface operator kernels ng) ([41], II):

(0)
k=0): Qéo) =T ‘zzygo)<v(0)>R

(7.5)

trsn(i-i) S
= RySh (ir-dg) <

z b

and

{0 1 00 4 ) Gggodng| ¢ Gz Ping)

(7.6)

\ !-*v.‘.' [ '-"J"-’,'f'#"-‘.'-" u._l‘\ -‘.- \ -¥~.‘ 'f-i!' -‘.‘¢~ l'.‘ - .“f.“ _\a'. \..\ il \ \.\‘\..\ o ‘-.-.
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R Here R is a plane-wave reflection coefficient (for the water-air interface)
._. and s is a shadowing function (0 € S € 1), whose statistical properties we
E::I:j shall comment upon presently, cf. Sec. 7.7, C ff. The subscripts g, ¢ in-
:’I;_:Z dicate the (moving) surface upon which the quantities in question are to be
o evaluated. Our specific result (7.5) is based on the Tangent Plane (T.P.),
4 or Kirchoff approximation, cf. Chapter 7, Sections 19, 20, [1], in particular,
:':E: the discussions in Sec. 19.2. (See also, Bahar [23].) 1In (7.6) the Av(k)
—";:-_f are the fluctuationsin the densities of the repsective k-coupled scattering
}'.t',j elements on Zg and Ec. [A full treatment of the cases k=1 is described in
_ Middleton [41, II, III].
\\ Applying (7.5) to (7.2) then gives us directly for the TSSF
.
oA - 2 A A - ‘
= k=0){ FO) i "otelo [ & [R s = (iOT-;OR)]
1} S (4ﬂ)2RoTR0R S0 % L° n, G+S
) (7.7)
2 Qo (elllma) &yre T
b o RT ’
e
:\.f, where all the conditions and approximations of Sec. 5.5 above are in force.
_Sj The result (7.7), with (7.1), is a generalization of Tolstoy and Clay ([9],
e Eq. (6.19), before integration by parts therein, cf. (7.27) ff. also), with
the inclusion of one or more of the following:
: (i). doppler, in g(r,t');
':._'.E: (i1). general apertures;
o (iii). general narrow band signals; (7.7a)
L3 (iv). shadowing;
\',2 (v). absorption.
;:3 Similarly, we find from (7.6) in (7.2) that the TSSF for the diffrac-
:::A tion terms (k>1) is
':" -lwzc T -
.-E: (lel): F§k>1) - _e_‘2’_°°__ I O‘RT'({Ros(iz'-c-G)Av((;k)/"G} + RS (:l'rzfé§)Av§k)})G+S
A (47)°R LR S z
.:::.‘: oT oR 0
S . e-(s/co)[(r.’fs)'?a;coTo] dxdy’
e ‘ (7.8)
:E.{ where, as above, ; is given by (7.3).
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{ 7.2 The Second-Moment Functions of the Received Scattered Field, X(t) L
; The second-moment function of the received scattered field is the sum -
. of the (k=0) second-moment functions, viz. %
3 I3
2 I (' - | (k) y yy(K) -t - :
. My(t) = Z M/ (1) = I3 Re <x'™7(t,)X (t2)>¢ » T E tyot (7.9) <
{ k=0 k=0

.
‘3 since all k (>0) components of X, cf. (7.1), are statistically independent %
. and postulated here to be stationary, as well. [The averages < >¢ are over ”
g' . the epochs of the injected signal.]

; Since Sin(s/ZNi) - Sin(s/2n1|¢) here in (7.1), and since

o g
: i i 12,5275 z.
)¢ <Sin(sll21r1ld>)51.,,,(52/21”I¢>)*>(15 = ISipsy/2m i) “s—577) (7.10)
. 3
: with the signal independent of the scatter, we readily find on applying (7.1), H
: with (7.7), (7.8), to (7.9), that the various second-moment functions of 9
L: the received scattered field are now specifically: L‘
(

y A. Total "Classical" Component k = 0: Q@
- 201 m(0) oy - (1),2 (0)

: k=0):{ My (1) = Re {& kOKo(r)ine M (1]fy24lc))s (7.11) A
. where ;)
1: Zawzc T ‘e
: (1) e 0060 . RN
N G z __—_7T7T_7?_ ("geometric," or spreading factor); (7.11a) "
P4 (47 ) Ry 7RoR

: o -'iw'r ' Ag 2 P
- = ' t. "y = 9 ' . ' = fo
2 |<0(r)1.n z f.,, W (f')e df's w, (f )= 5 S5 (FI5 (F = £-F)) 5
- for narrow

§ band signals;

f (7.11b) ’
; and, for the present, E.
. __1

. o © k 2a Ar

: (0) i ke,

( Mer (1 foole) = [ Oprleyl fo)dey [ Quprleytarl £o)%e r

n . . * -5
.3<R R 5515, <(.’l 224 ) (..2 220 )z e2ikd§° (%, -1)> d(ar) i
ol G+S nZl nzz G+S Cl,...cxlyo..(7 11;_)] b

L]
-
-
¥ ut o~ s ® v ALY R YUY SR R AN T el me My W e A M,y o~y W LS e o - - - LIS JEEIPR A"
NI T L2 EN IO v AN ARG, R G R P G G A N O RN
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»
o,
> where Ar =XyLys T tz'tl’ and here the composite wave surface z, (7.3),
S: is represented explicitly by
o & = Aty Rp /o) 5 = E(r_l‘*ér.tlﬂ-RRZ/co); Re/C, = (Rog-ioper)/cys
'-i
7.12
C (7.12)
;2: this last from (5.22i), including doppler, where also we note again the time-
j:j dependence of . In (7.11c) we have made the further assumption that the
f\‘ shadowing and reflection coefficients are essentially independent of the
§\ surface elevation here. As the exhaustive analysis of Bass and Fuks shows
oY) ([1], Sections 22, 23), this is reasonable: the shadowing function depends
o only on the statistics of the slopes of the surface, in the case of the in-
s tensity calculations here, cf. [1], 5, p. 297. This is also approximately true
3 for mean amplitudes, <X>, as long as the shadowing is not too heavy, [1], S,
: p. 297 again.
N
& B. The Coherent Component (k = 0):
(_ Our result (7.11) includes the coherent component, <X>, if any, of the
:{i received scattered field. [We exclude throughout any direct (coherent)
1§ propagation, cf. Fig. 5.1. This is very easily added, if needed.] The
3 second-moment function for <X> is readily obtained on setting v > t+t_ in
(7.11), etc., and letting t, > . The result is
>
,’
=0) - mt0 _ 1),2 0
& k=0):{ M (x) = Re (6 )kOKo(r)ine WO el f_g o)) (7.13)
with now
WOt - (B2 ooy,
@ = 7.13a
2 G+S Arrie o) ( )
and

ART(“ ) = f QRT( 1|f )<(R°r51\z>dr‘ I Q.RT(Y‘ +Ar|f ) <(R0252 >

e
)
&Y
'~
.,
o
¢.|
N
'..
Ay
'
I‘
N
@
N
I
'~
‘
b5+
*
’

£=G+S
2ik a AT
LR
e d(é_[‘) (7.13b)
‘.
.l:
~
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(j' Equation (7.13a) follows from (7.11c) (as t, =) because we have made the

‘:- usual reasonable assumption that the random wave surface (as an ensemble)
‘i:. is stationary and homogeneous (i.e., independent of (gl,tl)). at least over
s periods comparable to the signal duration.

‘a From (7.12) and (7.13) it follows that the total second-moment function
Q\ consist. of the sum of an incoherent and an (independent) coherent part:
1, o). 10y - wl0) (0)

3 (k=0): My (t) = %‘-(Xﬁr) + M<X>(r), (7.14)
‘ol
‘\; " where now, specifically,
’ o

N 01| ul0) (- (1),2 Yo' ry(0) -0
N k=0):| My_ ool T) = Re {61 /KK (1), e Meg’(cl..) = M2l )1 | (7.14a)
a Eq (7.11c) Eq. (7.13a)

Ej C. Higher-Order (Diffraction) Terms (k>1):

5:; In a similar way we obtain the second-moment functions for the dif-
i ’ fraction components (k>1), with the help of (7.8) in (7.1) and (7.9). We
=) have directly

» 2

I ~2aw ¢ T .

"v (k) (k) e 000 '1(001.' (k)

'y : = = ——

& L M) = g t) = Re g gz Kol hine T M Gl Fgugle )y

oT oR

)
n:'; (7.15)
bu® -
s
A where specifically

4"\-

o (k o ik 2a.°Ar
b - 0 =0 w

o8 e el ) - I 1 Ogrlzyl o) Qprlrytard £o)ve

o 3 (k)- ; (k)
".:::' .<[R°S (lz EG)A\)G +FROS (lz.E\S)AvS )

'y ", 46 L ", atS 1 (7.16)
15 - (k). - % (k)
.: . (EOS (iz'.S.G)AVG . ROS (lZ.ES)AvS )
N n, g L N, J/G+s 2
o’ Tik 23 . -z )>
.e 0 =~0 (52 &l uld(é&)’

SN e

> asllalP S

Y0NS




[
€
»
[
.
[
D
’
’
2,
’
.
X
.
'
14
]
.
LY
[}
a
L
’
.
'y
£,
.
.
.
.
f
»
¢
0
.
]
1]

............

&
@

s 92

'\

<
>

{? and the averages are carried out over all random variables: L0 &5 Soxe
{ etc., ﬁb, etc. [The averages over the reflection and shadowing coefficients
f% (EB’S) are independent here of the other averages, as noted earlier, cf.

:ﬁ (7.12) et seq., above.] Since these diffraction components can contain no

Ei coherent components--these are observed only in the "classical" (k=0) case,
S cf. (7.14)--we have written Mﬁk)(T) = M§sz>(r), k>1, in (7.15). Generally,
i:; these diffraction terms (k>1) are comparatively small, vis-a-vis the classical
N components (k=0), except possibly for certain transmitter-receiver geometries
;;2 and directional wave spectra where the classical components may vanish. [See
{ the remarks in Sec. 3.]
FSj 7.3 Explicit Surface Scatter Statistics: Two-Scale Models
iiﬁ Before we evaluate Mé¥20) in the above expressions for the second moment
.' functions, let us introduce an approximation for (ﬁ/"z)G+S’ cf. (7.7), (7.11c),
. (7.13a). R
’2 Let ZG be the surface expansion opgrator of a truly two-scale surface,
_j; where the second-scale surface here is Dgig» cf. Fig. 2.1, which rides on
¢ ‘ the single gravity-capillary wave surface, ich, cf. (7.46). Thus, we can
po write
2 SR g 2 2

Eﬁ Ig = {1+ tghg L. * 7?-(nG-gr) + ...} (7.17)
;% provided <|nG-V 12 > < 1, so that the series 1s (stochast1ca11y) convergent
s (at all r,t). Phy51cal1y, this means that <|n -v] > <<@ and <§§> <<1,

A

’
h Y

(m.s.), whlch is not difficult to achieve here Accordingly, applying
(7.17) to 9/"z|G+S gives

(/0 )gus = £ (B/n,)g = (/n,)g + egloeallig/ngg) * - # (@/n,)ge  (7.18)

since

4 N 2 2 2 2
G G

Nae
G wr'n 2 2
z G /1+C§+C§ 1‘*0)(‘*0'y

(7.18a)

T . e
-,'-.'.-_"._’.,"\'-.. \'_'..f-"-’_‘;..\.' e o

“

so that

. AR A ":.":.'. .

e
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i :
2 Sy 2 s or1n8.100.1001y = a1n=8 10-3
(‘, <[;S;I_G-yr(-ﬁ;)6] > = O(GSOGXGGXX) = o(10 "-10¥-10"*") = o(10 7,107 ") << 1.
Sj A. The Coherent Component (k=0) :
> Next, let us consider (7.13a) and note that the Rayleigh number,
» [koos(coseoT+coseoR)]2 is usually small compared to unity for the soliton- :
L_ waves. Thus, using (7.18) and (7.3) or (7.4b) we can write
.t
:j -~ 2
24 2ik _a k . 2 i
(0. 1% 0%0z" - 920 n. )22 ;
. Mar” (=l n ) © S1s2ikoe, g o5 - P2 ) %t D Ay
{ (7.19) f
3
S5
< First, we note that for z. a gaussian random process, z. and its (first)
N g @ gaussian 6
f derivatives are statistically independent, so that exp(21k £G) and
[ (n Za )/n )G are likewise independent. Second, to a good approximation we may 4
fi treat the gravity and soliton-ripple waves as statistically independent.*
X Using (7.20) and the fact that (g-Zgo)/nz)G = 2“oxCGx+2“oycGy'2“oz’ we see
- that (7.19) reduces directly to
¢ (o) 2 25(0), 42 2 _ 2 A
& Mr (el oo = IFy(2ogklg(-2ay, + 5 ofNgs *oo ) [ hgps | 05 =g (7200
-\ -
b o

since ¢, = Cy = 0, etc., where
% 21k “oz‘G L .
;; F1(2aok°)G = = characteristic function of (~cG); (7.21) :
3 .
‘; and, with the help of (7.4), we see at once that '

)3

02 (20, L, - 2a
é°30h‘ <( g°) (n 2g )> < A +XC ;s Z%' Y o >G- (7.22)
Y

This latter may be considerably simplified if we remember that Zx CGy obey
a symmetrical pdf (since %G is likewise symmetrically distributed. Then
(7.22) reduces to

DU LA

.
. e . e e e .

*0f course, this is not strictly true, as the configuration of the large-

~ scale waves influences the local wind action which produces the ripple :
N :
N structures which ride upon them, [16]. ;
‘. 3
S '

L

>

=
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&éegoh = -8y, <365éx“§x ¥ 6c§ya§y ¥ “gz)/(l * Céx * ;gyi>6 = 'zaozNéggoh ’
(7.22a)
so that (7.21) becomes
M (=]...) 2 |20 F gl + Ego_g N +"]|2ART(30) (7.23)
: (ZaOZ)ZARTlF1G|2ek§°§Né92°h, (k2o << 1), (7.23b)

generally, the latter when kgogNé920h<< 1, as it usually is. This [Eq. (7.23)]

is a new result, for general beam patterns where (7.13b) gives ART’ where
specifically now

22 2.2 2

6c_a., + 605"t a
N0 - 4< XOX _ "y oy °Z> . (7.24)
G

is the coherent "tilt-factor." This result is to be compared with (6.43),
p. 205 and (6.41a) of [ 9]. Here we have the additional effects of the
tilted ripple surface (;S), which somewhat further decrease coherence. But
since k§°§Né920h is small compared to unity, we can usually set the ex-
ponential equal to one in (7.23b). Also, in place of the angular illumina-
tion function f(e), (6.25) [ 9] we have 2a,, (='ZYT+C)’ as a result of the
direct evaluation of (7.7) in (7.19).

The beam pattern function, ART' insures a vanishingly small value of
Mé?’(»]...) for scatter angles off the specular direction, since from

(7.13b) and (6.39) specifically,

2. 2

Ar 2 (752 (919) 2 3 z[( 2°‘ox"’mx)2 (Z“o[bmz)z]

RT 0 —————  exp (- + . (7.25)
k2AB 7% A B

(where we have absorbed the kg-factor into the A, B's (and ko into bTR)‘
e.g., AT, AR are cKLZ), viz., are effective aperture areas now, cf. la of
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X Sec. 6.5; also note the factor kg in the exponent now). We have replaced

(R §)z by E—'§'(referred to the reference plane, S,, of the gravity wave
component) w1th the help of (7.17), us1ng the fact that |<ggfiy 3R 5> << 1,
cf. (7.18a). Since A"l = (RE/A. + RE /ML), cf. (6.32a,b), is Jarge, only
when Zaox TR etc. is small will ART not effectively vanish. (Here we

L) use (6.44)-(6.46) for ZgoszR in various configurations.) Thus, for the
near-specular directions only does ART differ from zero significantly.

Yo Furthermore, for the gaussian gravity wave surface we have specifically
oo the familiar result

“ %
(.-'.A’.I’.I

2,s"

NN

i ' 22 2
::\_: F - 21k aoz G> - e ZkOOGuOZ

1G . (7.26)

LG As expected, for rough surfaces (2k0 6%z )2 >>1, F1G + 0 and the coherent
o component vanishes.

B. The Incoherent Component (k=0)

4o Our next concern is the incoherent component (7.14a), for which we

{ need now M(o)(rl .)» Eq. (7.11c). At this point we can simplify (7.11c)
e by the fol]ow1ng series of modifications:

5N 1). We begin by expanding the exponential term in (7.11lc), using

(7.3) viz.:
faeld 2ik 2 (5-8) 2k o (T, )
. 0-0 52 <1/ _ 0 0z IG
e =e [+ 2ik 9 (U-zs‘zs 046!

22
* K5 l20, Bigy) (28, gp) s s Ko (28 Bg5s)° + o, (7:27)

Using the postulated homogeneity and stationarity of each component of
the wave surface, we get

(.- - 12 12,2
218 (5? Ei) = 21ko°’oz(C2G ClG) le ko(ng QG) g

*
)
«%a

ey PAXAN AR Y
: 8 4 85t
XXX kS
(1]

i (A " 2 s .
* 2iko 2, (Rgn Sg-igy ) *+ Kg(2ugeDy6) (2 Bog) C2st1s * +-- 1 .
(7.27b)

%
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~
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2). HNext, we reinsert the factors (é'ZEo)/"z)G back into the integrand

of A, in (7.11c) and then integrate each factor in Apr by parts (one over

~ RT
N X1 and one over ar with r, held fixed, since ¢g, &g are stationary and homo-
{E geneous here, in the manner of p. 198 of [9], but only for the leading term
:5Q of the series (7.27b), to achieve the desired simplification. When the
L "i1luminated" portion of the surface is large compared to (the square of the
,:§ (acousticl) wavelength, e.g., AS >>A§, or kgAS>> 1, or more precisely
;: kgAl >>1, cf. (6.52), we can neglect the terms containing the derivatives
) of the beam patterns. The result is, for the first term in (7.27b), where
{ we use also (7.18):
5:?
s
. n* n_ e i . - 2 2 2 2 i . -
o (2‘.1 2950) (9-2 2-9-‘0) 82”(09‘0 (2967216) ;[ao’x“o moz] e212é°(5-26 %16
" n n - a_ /2 i
; z1 /G z2 /a3 0z (7.27¢)
2
- A
2 ko » 40> 1
X
N We emphasize that Eq. (7.27c), et seq., applies basically in the "high-
"' frequency" régimes, where (ZkOaOZOG)z» 1. In the alternative "low-
‘ frequency" cases (2k0a006)2<<1, however, we may approximate the normal
- factor (~n) by writing
" n-2a).
y ( n )g -2aoz (7.27d)
o
N
.:j since the slopes (ng,cGy) are here small. This is Eckart's approximation
‘:i [32). Then, integration by parts is not required.
[ 4
i 3). Applying (7.27c) to (7.27b) in (7.11c) allows us to write for
as the factors averaged over the various surface components zg,, 2g.s ... etci*
R S
e ,
Y *This procedure is equivalent to a direct expansion of the exponential
.0 containing the soliton-ripple component in (7.7) and then integrating
ij: [ﬂf(ionioR)/"z]G+SéG by p;rts for thg first term of the resulting series,
- where again we require ngkS >>1, or k4, >>1, cf. [ 9], p. 198. This is
‘? then followed by the indicated calculation of the second-moment in question.
i
(2
N
._
Q:
A
,' 0 ed '-"‘-"-"\r 1.. . ,\,‘r,’r__..f .',.v‘_'-u’. . .-\.'_ RN \.",‘-'\.'.\f._.'\'S-F\d'\nf".P.,._q'.,d‘,‘,;'\\q'.‘( ~. \,-5- \ - \-'!-'l\‘"',"':‘.\.




97

2 .2 .
B R 2k _ig Azor~24p)
< > =[ox 0 oz] Fpg +<e 00 226 %16
C].G c,.OZ
(7.28)

2 ~ - - ~
" k(R 220 m )6 0y 220/ 5p ) (220 "By 6) (25 Bp6) 22515 * - - > s

where specifically we replace the (interior) exponential term in the series
(7.27b) by unity, since here 4k§(gd_ﬁz)2csz><<l, and where now

. 2 2 3
FZG = FZ(-Z]Q ,21(), k )G = exp {-bz [1 = OG(Ar’T+é.r.qloR/co)]}’
(7.29)
°G =< c2> y b, = coseoT+coseoR,

is the second-order characteristic function of the gaussian gravity-wave
component. Here °s is the normalized directional space-time covariance
function of CG’ viz.

-

°Pe 7 Klromardop/eg) = f o1gtagi(eygenpaittaT e ghyge  (7:30)

where, of course, <t> =<g. (>=0. The quantity ér'ioR/co represents
a doppler delay produced by the moving surface [34], (a delay which we can
usually ignore henceforth).

4). Since the correlation distance,lc, for the large-scale surface,
0allgree-) = el, is large vis-a-vis Bgs 0(Lgs...) = el for the small-

scale surface, e.g., &; >>2g, S0 that ,q = 56 for all ar~ ecl<< ¢g),

we may set . = t1g in (7.28). The result is
. a§x+a§x+u§z : 2 2-0 -
DRI EIN ey A (2“ A) >K (ar,=+.
2z
(7.31)
k24, >> 1,
0 1
}; where in more compact form we write
( 2
.’.
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2,2 ,2 2
a_ +a_ +ao
s [_ox oy oz 2,(0) X
< >C’G ( %oz ) F2 o Ng- 1nc(-o)Ks’ (EG > 25) (7.31a)
with now
"\ 2
n(0) _[ %20 .2
NG-inc(2o) = o (2g4-0)g (7.32)

the incoherent "tilt" factor, cf. (7.24). With the help of (7.4) we
find that

4

(0)( ) . (Zaoxcx+2aoyE¥ 2a ) (7.33a)

%’inc (1+52 2) :

X y G
(%oxx %y By ° )4 J(0)
= 16<( 5 g Y 0z :} = 16 NG I [general R#T

(1+Cx+cy) G (bistatic, etc.)]

(7.33b)

and specifically, cf. (5.28), (5.30), with symmetrical pdf's of “%x* Gy

[ef. (7.54) ff.]:
4
. 4 by
= 16 {sin 6
ol 1+ 2+ 2
oty

CZ

. 2 2 4 1
+ 6 sin“o ; cos” 6 <———L> + CcO0S 8§ < > ; s (7-33C)
QAN % T\ e/

NOe 1)

T/inc-back

%T="/2 G

(0) 4 << 1 :>
NATT(0 2)s = 16 cos '@ . (7.33d)
G oT/inc-spec o oT 1+c§+§§

oT” %or™™2 G

In fact, for the general case here (with ¢ oT = 1/2) we get
c4
(0)(*—0)1nc B o‘gy< 2 2 oyo< * “4< : 2>
= r4 02 2
T /2 1+Cx+cy +g +; 1+cx+cy G
(7.33e)

(which are evaluated in (7.66) ff.).
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ol 5). Applying (7.31a) to (7.11), with (7.13) as it becomes (7.23b)
.. allows us to write specifically the second-moment function (7.14) for
.':::: the incoherent component (k = 0):

«"".

(0) (1) “TuyT ()

d 0 _ 2-(1 0 - u(0
U MX-<)0(T) = Re{ koG KO(T)ine [MRT (]...)
] 22 2 .22.(0)

-4k" o~ _a.-k~aocN
_ 2 00z G "o S G-coh
(Zaoz) e ART]} (7.34)

L where now

\l

Lot - 5 = 2ik a <A

Y (0) 2 22 oo A

Y Mar (Tl“')(sz 1) By S fwf Opr iy 1o Xgr Ly tar(f )*e

-‘.‘\‘ o 1 -

/o0

N

‘_',S a§x+ag +a2 2 2 (0)

K . y oz 93 .

SJ %,/ 2 FZ( 2"kooloz’21ko°‘oz)G ¥ koNG-incKS(ér’r'")gd-rld(y)
o (7.34a)
{ .

' —2 =2 = -2ik o -Ar —2 -2
o ; 0~0 ~ =

o Aer = By S I_JORTQET e dryd(ar) = By S 1 (kgey)s  (7.34b)
o
R

with I1 given explicitly by (6.39) here for the general gaussian beam patterns
:::ﬁj of Sec. 6. Following Bass and Fuks [1], Sections 22, 23, we make the indicated
:Z;: approximations of removing the averages of the reflection coefficients and

": shadowing functions from under the integral operations, with the observation
® that these quantities are slowly varying over the regions in which QRT is
e , —

"y noticeably different from zero. (In fact, we can set 1?(2’ = F’;z = 1 here for air-
,_: water interfaces, but note that ?2 # ?, usually, <f. pp. 288, 291 vs.

‘:;':' pp. 308, 315 of [1].)

.L.
'-'; 6). At this point we take advantage of the fact that FZG and KS de-
j{ pend only on the distance difference ar, because of homogeneity. Thus we

f. 3 3 -~ . »
"-;. can integrate over r; in (7.34a), using (6.36), (6.40). In addition, be-
;‘ cause of the short correlation distance ig vis-a-vis the domain of "illumin-
P - ated" wave surface, i.e., the region on So' Fig. 5.1, where QRT is non-
e

%)
s
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negligible, we may set 4r = 2 0 in 13(Ar), (6.40), e.g., since A, B, (6. 32),
are small compared to unity. The resulting expression for M( (..
(7.34a), becomes (in (these "high-frequency") relations:

2.,.2.2\2 .
—_—— ™ a" +a® +o i2k & *4r
M(O : Rg 2 d(ér)ls(ér)FZG(ér,T)<M> e OO

- gl 2
) Zik Q ’_A’_r
¢ 15000200 (4 [ Kglarre T0 T d(an).- (7.35)

The first term of (7.35) embodies the (non-diffractive) scattering
attributable to the large-scale or gravity-wave surface, where the Kirchoff
conditions are assumed to hold (cf. remarks after (7.6)). Here the "high-
frequency" condition [(k b oG)>>1] is assumed to apply cf remarks in 2).
above. Otherwise, in the "Tow frequency" cases (kb °G) <<1, (7.27d) is
used directly, and the factor [(aox+aoy+aoz)/a /Z§1s replaced by (Za )2
in the first term of (7.35).

The second term of (7.35) gives the scattering due to the small-scale,
or soliton structure, which rides independently on the large-scale surface.
This is generally nonvanishing, since Né?}nc> 0 as 87 * /2, as we shall
see, cf. (7.56), because of the tilted surface (;g). This component we
shall call a perturbational conponent, because of its small Rayleigh
number usually, even though we do not employ the standard perturbation
theory to derive it, cf. [4]). [In fact, if we were dealing with capillary
waves (cs) riding on the gravity wave surface, the slopes of these capillary
waves are steep, cf. Figs. 4.10, 4.17 of Phillips [27], so that conventional
perturbation techniques are not strictly valid, even though the elevations
themselves are suitably small, cf. remarks, Sec. 1.)

C. Remarks on Spectra and Covariance Functions

The last integral of (7.35) is recognized as a form of wave-number-
time intensity spectrum, here of the small-scale surface Lg - Different
forms of such spectra, depending on the details of the definition, can
be obtained from the fundamental quantity, the covariance function, KS
here.
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Accordingly, let us consider the following forms and definitions (for
two-dimensional wave numbers k = (kx,ky»:

Wy(klT) = K (ar,n)eX 8 d@ar), (7.36)

for surface (a). Here the fundamental definition is the space-time
covariance function:

Kyarst) = <e (ry,t, )5, (oAt D> =0y, <> =0, (7.37)

where, as before, we have assumed that the surface elevation, Zyo is both
homogeneous and stationary. The transform relation corresponding to (7.36)
is easily found by multiplying both sides of (7.36) by (21r)'2 exp(-ik-ar),
integrating over k, observing that

f ei.'&-(é_l"-é_r‘) ( Q.IS)Z = 6(.A..r|-é,r)' (7'38)
-0 2n
The result is
K, (ar1) = i W (klv)e e dk (7.39)
- (2n)

so that, for example, the mean-square surface elevation og is, from (7.37),

N

g

<« k(0,00 = [ (o) Lyzo? (7.40)

K
(20 )2
%0 (0,0) = K,(0,0)/0% = 1, (7.40a)

when our spectral defintion (7.36) is used, as we shall do so here henceforth.
Consequently, the last integral in (7.35) is seen to be

© 2ik g A
J Ks(l_\_[‘,T+...)e o=l

-0

dlar) = Wg(2kg Iv) °§;S(2kdﬁo|1)’ (7.41)
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the wave-number-time spectrum of the small-scale surface; &S is the normalized
spectral density, both defined according to (7.36) above. We shall use
this result subsequently, in Section 8.

Next, let us consider the Wiener-Khintchine forms (Sec. 3.2-2, [45])

- -]

w(f)z 2f K (e ™z 2f d [ K (ar.)e’ g (ar),
- - (7.42a3)
= 2nf
with the inverse relation
. _1 fwtge o ikear
Ky(1) = 5 I _H(fe = [ K (ar.t)e’="=d(ar). (7.42b)
Also, in terms of wa(glr), etc., we have the transform pairs
S -i ” ikeAr-gr
Wlew) = [ W (klt)e ™Tdr = [ [ K (ar,7)e’ = 89T (ar)dr
a Ll —__— = (7.43a)
w = 2nf,
and
Kylarse) = [ T (el ikcar do di (7.43b)
a= n (2n)?
so that
22 o dodk _ ¢~ dk
cs =0%=xK(0,0) = [ [ W (kw) -f W, (k| 0} s (7.4a)
a a a R (&)3 a (2r)
by (7.40).

Similarly, usingy = k/27, f =w/2n as the basic variables for spatial
frequency and frequency, respectively, we can write

Halple) = [ Ky(ar,1)e2 24 d(ar) = W (k|1)s v = k/2n, (7.45a)

A (are) = [ wy(ylr)e 2 gy (7.45b)




so that, again,

2 _ _ o0
<> = K, (0,0) = {.,., W (sl0)dy

£ (210) = Wy (KI0) = W (phy 10 = 7 (k) 32

Also, we have

Wabe £) = [ W (ule)e " ar,

-0

with

Ka(Ar’T) = %J’ f Wa(x,f)eZH'ifr-iZn‘g-A_r dy df

sy (vf)=2f f Ka(g,r)ez"‘&'é\.l”'z""“ dr d(ar).

Thus, (7.47b,c) are W-K transform pairs.
Other forms are also used:

I. Bass and Fuks. [1], Eq. (3.21):

(ars )i Mgypog ) K (aran) = ogo,(ari)s ogf [ W (kg pe' S5 dka

%afa
W (7.483a)

W
B+F "a|B+F iarektior

d(ar)dr,
(7.48b)

Ha(k’w)B+F = '(;Yl_)g{mfpa(é_r,'f)e

Therefore, from (7.43a,b), we have

3 :
(20) W (ko) = 01—2 Wy(kso)s since o, (ar,t) = o (-ar,-t). (7.49)

_ 1
or Wa(l_(.,w)Bﬂ: = —37 Na(_ls.,w).
(2n) 9,
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il I1. Phillips. [27]; Sec. 4.1: l
(:
‘;-\.: (r>ar; tor): Za(-A-!"T)P = <C1a;26> = Ka(gr,T) (7.50a)
) ® . .
07 Z; nsw X(koo) = [ [ Z,(8r,c)pe! TR dad(ag) (7.50b)
:’\:.- - (211’)
{
h X = W(kow)p = W, (Kou)/(2n)3
.:': - a -
N} _ (o2 . ) 2 (7.51)
- 32
o o(w) = [ Wikow)pdk = Wy(w)/2n = W_(kp)/(2n)70y, etc.
W
Yok I1I. McDaniels and Gorman [4], Eq. (16):
< 1 7 iarek
&.: wa(-'slo)Mcm-G = 5 j- Ka(g,O)e d(ar) vs. (7.41) (7.51a)
3 ©
10y
e . = -1
:.;. -~ wa(EIO)MC[HG = (2x) wa(-'iio)Mid' (7.51b)
\
P IV. Bahar [23], Eq. (14b):
~
A W (k|0)pen = 7 2W_(k|0)
AL a'\=1Y/g+p a‘=1%miq”’ (7.51c)
. 2
~ L = =
o Wy (k|0)gyg = 7 Wy (K[O)yepag - (7.51d)
f‘-“s )
:'.sj D. Capillary Wave-Number Spectra
For the record it is instructive to summarize the specific results
:; for capillary wave-number spectra, which are needed in subsequent inves-
.3:;; tigations.
R Proceeding from the defining relation (7.36) we have
2 W (k .k |0) = ;” K. (ars 0)e K87 d(ar) (7.52a)
\ cap' 'x’y =) Tcap ars A1 :
WY
~'4'~ = 1 ® - _ |
¥ 71 W(f) <slu-K (&) 2>, dfg, v = Ko/2n, £ 3 0,
WA - 7.52b
[ 2 ( ) !
::':: where W, is the point (intensity)-spectrum of the (pure) capillary surface,
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Ce» assumed here to homogeneous and stationary, and o is the wave direction.

Since in polar coordinates

§(u-K (3)) = 8|yl - F (wg))slo ~&), K¢ = K(fg)s w o = 2nfg,  (7.53)

1/3 2/3
c 3“5 ’
°water I water 1S the density of water (= 1 gm/cm”) and

J = surface tension (= 74 dynes-cm), we find that

where‘_lss and fs are related by the dispersion law KS = 2n/>\S = a

with a. = where p

X (w )
_'=s's = 3 /2mv _ 32 1/2 >
8 (v 7 ) 2a1/2 s(fg - K /2ma ’%), f 0. (7.54)
c
. . {2 2 . -1 )
Thus, (7.52b) becomes directly, with k = ky + ky » ¢, = tan (ky/kx)'
3 /K_
20 372, 1/2 .
wcap(k"bv'O) = 4a1/2 WC(fS KS /2nac ) <(5(¢\) a)>& s fS> 0. (7.55)
o

A similar calculation for (pure) gravity waves, where KS = wi/g is
the dispersion law, gives
3

=T =
Hg(k|0) = % 9 K

2,1 g -
Wolzy Ksa) Slo -a)> »  fg> 0. (7.56)

In the above we have

6(0,-8)% = wy(680)s  -n/2 < &Gy < w/2 (7.57)
= 0, elsewhere

where wl(&-ao) is the pdf of wavefront directions. No backward waves are
permitted here: (fS > 0) and (&-&o) < /2.

For our results above2K52=%2nv = 2kosine°T, %1 = /2, e.g., kx =0,
ky = 2k°sineoT and Ks = (kx+ky) , With o, = n/2. Thus, if &o = 0, S0
that the transmitting and receiving beams are cross-wind to the mean wave
direction (a = 0), Ng(k,¢v]0) = 0, since wl(n/z) = 0 here.

A variety of point spectra, W, is available. If we choose the Pearson-
Moskowitz spectrum [8], we can write specifically
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-b/w
- a S . = . -3 2. - 4, 4.
WP.M.(fs) =ge ; a=8.10-10 "g°; b =0.749"/v"; (7.58)
s v = m/sec, g = m/sec‘.
For the purely capillary cases we have, accordingly, wg = (KS/ac)3/2,
while for the (purely) gravity wave situations, wg = /KZEZ
In the general case the dispersion relation of the combined gravity-
capillary wave is
L
wg= (oK + 3 K%, or £ = L(gkg + T By, (7.59)
so that
. - 3 /2y o1 3 5
8 = Folog)) = SR 6(f - 50 oK + K] a 1%, (7.60)
c

in (7.53) et seq.

7.4 Extensions
Here we summarize various additional results, needed in our analysis
above. These are:

A. The Diffraction Terms (k>1)

These are obtained from (7.16) in (7.15), and clearly depend critically
on the statistics of <Av§k)Av§k%>R. To date we have only evaluated the
case k=1: diffuse (single-point) diffraction. For this we have found that
[41 II, III]

3

(k=1)  <oviVavi>y = 9,16(ar-0), where || = leyaCyy = Syl (7.61)

Thus, |J| is a measure of the surface curvature (at stationary phase
points). Here

1
Jg - ————

2 4.2
/&+¢Gx+56y

s 1 :
— |JS' =

1+ch+cGy

Jgl s (7.61a)

191645 * sl

since <(1+c§x+;gy)'%>'= 1+ °(Z°§x) =1; (see below the coefficient of
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B. The Evaluation of the "Tilt-Factor," N(0)
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8, . , . )
cos™® r in (7.66); also, IJG|<<|JS|, because ¢ » Cgy 2re essentially con
stant in the region in question about tg» where tg has (local) stationary
phase points. [Also, we can show formally that [41, II]]

(o1) vl < RN tin,t,) G o0), (7.62)
where Rgg) is proportional to the joint probability of having k-coupled
scatterers jointly at (Ll,tl) and (Lz,tz).

We remark, however, that in most cases these diffraction terms (k21)
are considerably smaller than the (k=0) components, cf. remarks in Sec.
3.3. In any case, see Sec. 8.5 for an evaluation of M§}lx>(0), (7.15), (7.16).

I3
The "tilt-factor" Né??nc, (7.33), caﬁub;nieadily evaluated in the
isotropic cases; (we reserve the general anisotropic case to a subsequent
study). Before we proceed to an evaluation, however, it is immediately
evident from (7.33c) that Né??nc >0 when eoT + n/2, or ¢grazing = 0.
This nonvanishing result is qualitatively consistent with other results
[cf. Eq. (27), Eq. A.14 of [4], and (4) in (2) of [3]; also Sec. III of
[29]], as 6,7 > "/2. However, these earlier results use an ad hoc mech-
anism: special modulation of the grazing angle--to account for the "tilt"
produced here naturally through the explicit (slow) time-variability of
ﬁg, cf. (7.4) and the comments after Eq. (5.21).
Since &g is gaussian, <;G> = 0, the pdf of the slopes is likewise,

such that

2 2 2 2
~%ax/ 2%x~%gy/ 2%y

e = =
) ny = CGXCG_Y = 0. (7.63)

wl(CGx’CGy) 2"°Gx°Gy

We use (7.63) in the isotropic case %x = Gy for direct evaluation of
the averages in (7.33c) for backscatter régimes. We consider the integrals

2,2 2
10,(2),8) . (7 Wyl gty Y 2%y g

Lo Lexlay?

na
2 X

-r2/2
6 4 . 4 je
,r sin’ ¢ T rdrd ¢

2n

/ dr |
0 0

dol1,rlsin?
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-r2/202

= 1 2 ! (2n,n?2,3n4/4) rg'_—_’—zrju: . (7.64)
chx 0 1+r

These integrals may be expressed in termsof the exponential integral, e.g.,

(7.65a)

2

Using the fact that a” = 1/20§>> 1, here, and the expansion

-e¥Ei(-x) = 202 ] (-1)"m(22)";  x =a? = 12, (7.65b)
m:

0

we find finally that (7.33c) reduces to

4 2

(0) . 2 2 4 .
NAc/ (0 BTt00Gg, SN 8 ,7COS 8o7tCOS BT}

. 2 \2_.
Ngs ®oT)inc-back = 16{3(ag, ) sin

(7.66a)

(¢°T="/2) (°Gx=°Gy) s

which becomes 4805x (>0) when aoT + n/2, demonstrating its nonvanishing
nature, as noted above. Similarly, from (7.33b) and the above we get
directly

(0) s 2 4
"as" o1V inc-for-spec|o y= pens2 * L1+ O(ZgeeylleosTopr - | (7.660)

Similarly, for the general case we get from (7.33e) in these isotropic
situations:

(0) : 224 .2 2 2 4
NGS (uo)inc ¢OT;“/2 16{3(OGX) G°y+606xa°y0°z+uoz}. (7.66C)

Here (7.66b), unlike the backscatter cases, vanishes as 0T > n/2. Note,

however, from (5.24), (5.25) that Ngo)

(7.66c).

nc > 0, generally, as 0T * /2, cf.
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The rdéle of the shadowing functions S, E? is extensively discussed
in Sections 22, 23 of [1]. We summarize the principal results needed here.
The precise forms depend on whether monostatic (R@T) or bistatic (R#T)
operation is involved.

With a = (tan®)/o,_ = cot® ;/o,_ . we have for S in the coherent
component [(k=0): (7.13), (7.25)]

Sk@leeak shadowing = ofa/2) [1 - AN(a)] a2>>1: Eq. (22.39), [1], p. 288,
) (7.67a)
2
1 /2 -a°/2 1 -a /2
= (1 - —V/Z:e (1 - ——e ) (7.67b)
' w a3/?F al>>1
_ -ZkgogcoszeoT
SR@Tlsmng shadowing = (E9- (22.52, [1], p. 291}/e . (7.68)
Here we have specifically
2
_ 1§ /2 -a¥2 . _ 2 Xt
AN(a) = Za{//w e a(l - e[a//?])}, o(x) = ;5 IO e - dt:
error function, (7.68a)

These results also apply in the Snell direction for foreward scattering,
R#T, obeying (5.29).

For S~, associated with the intensity of the incoherent components,
we find that

2

S et = 1+—A:KEY , Eq. (23.29a), p. 308, [1] (7.69a)
back- = /\N(a)'1 : strong shadowing;
scatter a<<l (7.69b)

=] - AN(a) : weak shadowing, cf. pp. 308-311,[1].
as>1
sZ . 1
R#T = T#ha)¥A (B * Eq. (23.40), p. 315, [11]:
foreward (7.69)
scatter ) = coteoT . b coteoR
Oy=y Oy=y

For details, see subsections 4,5 of Sec. 22, and pp. 304-315, of [1].
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8. Limitin ses of Scatt nsities for
¢« andom, Two-Scale Surface Model

e The two limiting cases which we consider here are respectively (1) the
Z;:t; “high-frequency", 1arge -scale gravity wave surface (G), where (k b %6 =

N

:‘._\j k (coseoT+cose R)<cG>) >>1, and (2) the "low-frequency" cond1t1on where
- (kb 0.)2<<1, viz., large and small Rayleigh numbers for this large-scale
_ 006G
‘-}: surface wave component. The small-scale, or soliton-ripple surface (S),

> is such that its Rayleigh number is always small, e.q. (koboos)2<< 1,

~.§: og §> Moreover, critical to the specific results here is the fact that
A
,“ . . the correlation distance* of the small-scale surface is likewise small vis-
w50 d-vis that of the large-scale component, e.g., g << L5 (This fact ensures
,.s \ 3 .
\& the explicit separability of the two components in the detailed analysis,
-rffl cf. Sec. 7.)

2 OQur task here is to provide specific relations for the mean scatter
.‘_:::.' intensities under a variety of operating régimes: (1) "high-frequency" (G),
:-_::I: backward and "foreward" scatter, both incoherent and coherent; and (2) the
E:\ same for the "low-frequency" (G) cases, including specular (Snell) and non-
) "; specular directions. These results, in turn, are employed in Section 2 to
} . give the desired scattering cross-sections, which are the ultimate analytical
-" goals of this initial study. For the most part, the diffraction terms (k>1)
:::.:[;: are ignorable vis-a-vis the "classical" (k=0) contributions studied here.
AN Before examining the various special cases above, let us note the

____. following general results:

Tl

a N
AN

i 8.1 Scattering Intensities: General Forms for "High Frequencies"
,.-‘-\-
From (7.34) and (7.35) we have directly the following "high-frequency"
? form for the incoherent scatter intensities {(r=0) of these two-component
3'5:, wave surfaces:

203 2,2, 2\2

T 2 0 1 7 2 2 ox™oy™oz A

e kbogl>>1: MO (0) = 6l (0), 82 52 (k2 OX 0 92} 1 (2 5brel D)
o 0z
? + k N inc(2“0)13(0)ws(29‘-okolo)] R (8.1)
B2 aer - , 2.2
e b, *For the moment we use an "isotropic" distance ¢ = 1x+2y

to describe this quantity; generally, a wave surface has two correlation
*.-: distances, £, zy, cf. [1], Sec. 3.
e
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where the term Még;(m|...) - 0 in (7.34) for these high-frequency situations, 4
cf. A, Sec. 7.3, and Ay (=2n//AB) is such that kgA1>>l, cf. {7.27c) et seq. Here
and throughout, 2a, = (Zaox,Zaoy), cf. Ar-ZQO in I, 13: ar has only x,y
components.

Since FZG (7.29) in (7.34a) becomes here for the gaussian gravity

wave surface, on expanding pG(AR,O):

2 a
e-(kobooa)z(1-96[9_5,0])~ [ (kgr2)rDyear

? (koboaG)2 >>1,

Fog =
(8.2)
where now the dyadic
2.2 2
. byoax o°xy | bo96x 0 .
QM N 2 2 = »Oyy = 0; bo = C0S61+C0S6 o3
bopX.Y bocGy 0 bgoév (8.2a)
and
Yok, 0
S . ~ 4,2 2 2,42 2
K ,DM = b2 ’ det QM bO(UGXUGy ny) booncGy (> 0),
o 2
0 l/cGy (8.2b)

We see that 12 in (8.1) is specifically
. 2 ~
2ik o epr - (k /Z)AI'Qm‘éf
Iz(ZEO'RTR) = ffamﬂﬁT e 00 0 dr d(ar) (8.3a)
2 , 2 1 a-1
(979p)" 2" - 2{2a57byp) Ry (20 Brg)

2 —
ko VABiejdetQM

s (8.3b)

(with k2 absorbed into A, B, cf. remarks (6.43) ff.), from (6.43) (subject
to the approximations (6.42)). Moreover, from (6.40) and (6.52), we have

1,(0) = (g;9g)% «//BB = (g95)%,/2. (8.4)

_Applying (8.2b), (8.3b), (8.4) to (8.1) then yields the following general
high-frequency form for the incoherent scatter intensity for arbitrary

directions of incidence and observation, with the finite dimensions of the
transmitting and receiving arrays taken into account:
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(0) . a(1) R2 52 4 2
MX'<X>(0)‘(H1-Freq) = 67K (00440 7 41(9y9p)
2 2
2 2 2\ 1e (_ 1 (2a,,-brp, ) . (Zagy'bTRy)
(a +o +a ) TexpL- 2 bcok bzoé
. ox” %oy ‘oz 0%Gx 06y
/2 2
%z onoGybo
45 4 (0)
9
+ 2002 ), W (2]0)]. (8.5)

Generally, bTRX y = 0, if one is sufficiently in the far-field of the
scattering surface, so that here, cf. Fig. (5.1), (8.5) reduces to the
simpler result

. 0) (1) 22 o2 2
(b:520) | 1O) _(0) =6k (0), #2 52(g g.)%

TR X-<%> (Hi-Freq) o' ’in o T°R" 1 }
A |
koA1>>1

2 2
2 (200,)°  (2a,,)
2 4 2 + 2 T exps- 7 + 7
%ox %oy %oz 2bGokx  2b5ohy |
oz/? Po%6x6y |
4
+ EQ-N(O)(za ). W.(2a_k_[0) (8.6)
2 6 =0’inc’'S* o o1 ) ‘

The first term of (8.6) represents the "geometrical acoustic" (i.e., high-
frequency, k,> =) solution, for the specular point, or facet, (acoustic)
scatter from the large-scale gravity wave component. As expected, it is
independent of frequency. The second term of (8.6) represents the “per-
turbational" or small-scale component solution through first-order Bragg
scatter (-ws), which is always nonvanishing (ko< ), [Various, less general
forms of (8.6) have been obtained by a number of authors recently; this
point is discussed more fully in Sections 2 and 4.]

The coherent component of the scatter intensity, Mégg(O), is similarly

BLdS

obtained from (7.23)-(7.26) in (7.13). The result is
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(0)¢qy = g(1) 252 22,2 2
Mexs(0) = 677K (0)50keR,™ 5747 (979p)
2 2
20 _-brp) (2a -byp)
o2 22222000 _ 3.2) 2y (Zagbrply
) [( 20,,) e boko?6 Ko sNG-con e %o ) *TB ]’
(8.7)
which is valid for all frequencies (and the various other conditions of
Sec. 5.5 , Sec. 6). Here we have, cf. (6.32),
At A A A
- __R_. . = 2 ._T_. 2 R
A= 2 + 2 B aT(e) 2 + aR(e) E?— s (8.7a)
oT oR ol oR

cf. (6.11a), where we have absorbed the kg-factor in (6.17) into AT’ Ans
so that these quantities represent the effective aperture (or array) areas
of the transmitter (T) and receiver (R). For the high frequency cases
considered here, bgogkg >>1, so that Még;(o) + 0, as noted above, cf.
(8.1) et seq.

8.2 Scattering Intensities: General Forms for "Low Frequencies"

For the "low-frequency" cases we use (7.27d), with (7.23b), (7.25),
to write for the incoherent scatter intensity (7.34) now, on expanding
Fog in (7.34a), with [az a2 4q2 /o /2]2 replaced by (-Zaoz)2 since the

2 ox oy oz "oz
condition koA1 >>1 may not hold:

(0) (1) 2,2 'k2b2°(2; 737 22 "‘2°§"é0) h
: 00 - 095"G-co
Mx_<x>(0) Jow freq G KO(O).in{ koboe [RO S RO ST e ]
- 5 2ik _a. -Ar
7 .4 2, Ar
+ 1 (2a5°brp) + B2 8% bokd [ Kglar0)Iglar)e O T dlar)

22 2 4,(0)
+ Ro S 13(0)koNG-1nc NS(ZgokOIO)} » (8.8)
where we have integrated over r to get 13(é5), (6.36), (6.40) in the
second term. Since A, B, (8.7a) are small compared to the regions Ar

" e =
oS Y Y

M T
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2
N .
N where KG(ér,O) is significant, we can set or » 0 in 13(é5) without
" noticeably changing the result. Accordingly, (8.8) reduces to the follow-
A ing expression
v 4(0) (1) 77
" 0 : 1 2 2
re (0) =G K (0). {Apcla,.) +RESC (949,) A
X x> Low Freg o' ’in '“RS'%o o T°R 1
N 4 K4
~ ko .4 Ko (0)
2 | [7?'bowG(220ko|0) 2 Ngs-inc S(Zgokolo)]} (8.9)
x -
; where _k2b202 . _k2 ZN(O) ( \
_ .82 006G -2 —2 0%S" 'G-coh 8.9%a
agsag) = Kiple (& -FL5 ), (22,-brg)»
o
q 20, (2a.-brp) #0, k2252 <<1 (8.9b)
> i =0 =IR’x or y°> "0 0G * :
Lo
2
- since from (6.39) (with ki-factor absorbed, and added in the exponent):
- 2 2
: 2 3, 2[(225~b7R)" (205, -brp)
( (9798)" 5 - 3%, A + B
- 1,(295bpg) = —5— 4] e (0<A,B<<1).
3 27R 2 1
- 0 (8.9c)
9 2 _ T.
ot Furthermore, when Eg 3 = Ry (=1), usually here, and 5° = 32 = 1 (weak
- shadowing), with ko éocoh <<1, cf. (7.24), N éo) bE Al - b2, so that
o 2 2.(0) 2.2 2 . -co 0z ©
Y k0 SNG coh = k b %S <<1 then ARS(aO) = 0, even when ggo-gTR = (0, as noted
Y in (8.9c).
- 8.3 (Monostatic) Backscatter Intensities
ﬂ For the incoherent backscatter intensity at "high frequencies," we

> get from (8.6) directly, with 20, = 0, 2a = 2sine _q, (eoT = /2), and
' bTR = 0, the well-known result (w1th respect to the first term), cf.
Tolstoy and Clay ([9), Eq. 6.75),

61k (0), (999) 27 4y

tan eoT

W

onoGycos e oT

k
+ N(O)(Za 20) incWs (2%, 100} [ (8.10)
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The coherent backscatter scatter intensity Mé&l(o) (8.7) vanishes, because
of the high-frequency condition, 4coszeoTbgk§cé >>1: the number of coherent
"specular points," or facets, backscattering at eoT’ and even as eoT +0 !
(Snell angle), vanishes because of the extreme roughness of the surface.
The contributions from the incoherent "specular points" (first-term of
(8.10)) likewise rapidly vanish as T * n/2 (grazing), as their number,
effective at eoT’ becomes vanishingly small as eoT + n/2. This is not the
case, of course, for the “tilted" contribution, of the small-scale soliton
waves, since Né03“c> 0, cf. (7.56a,b). Here, since L 0> @ s1n6 oT?
We(2a,k,10) = Wg(0,2k sin6 ;|0).  Particular models for "s' (7.41), are
discussed in Section 3 preceding.
Similarly, in the "low-frequency" cases we use (8.9)-(8.9c) (where

ARS;O)’ to get the incoherent backscatter intensity

(0) (1) 72 52 2 a_ .4 .
M0y =n2 2 6tk (0) 72 5%(g0p)%, [8Kicos™® WG (0,2k sine -|0)

=" ino
Low-Freq 4
back 0 (0) )
+ 5 Ng_ mcws(o,zkosmeoTIO)] ,
(8.11)
which reveals the expected first-order Bragg scatter terms (~NG, NS).
The corresponding coherent backscatter intensity is found directly °
from (8.7), with bep = 0, viz.:
2TR T % 2¢in0
(0) (1) - Sl
0 261 2 2 24 B : o
Moo =ny2 = © KJohﬁi'semﬁhﬁﬂﬁo 2 c0s™0 g8
Low-Freq
back B << 1;
(8.12)

unless 0o7 = 0 (vertical direction), whereupon (8.12) reduces at once to

M(0;(0) ! 2 261k (0) o2 SPar9) 232, (057 = 0).  (8.122)
Low Freq

back:Snell

|
|

A
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8.4 (Bistatic) Scatter Intensities

With bistatic, or "forward" scatter, the facet terms vanish at high
frequencies, except for a small case about the specular, or Snell angle,
where 2o =2 <0, cf. (5.29), (5.30), since ol , o5, <<I, cf. (8.6),

oy “oy
where these facet terms become

'(20. ) /bZOGy

(0) e T, - =
MX—<X>(0) . ~ 2 2 2 2 ° (“ox =0 “oy)'

Hi Freq Opny0 On,0
Snell:g q=n/2 Gx"Gy Gx"6y

(8.13)

7
GOT < Tl','2’

cf. Bass and Fuks, ([1], Sec. 20, 1, 2, esp. Eqs. (20.28), (20.32); also
(5], Eq. (13a), where Y=0 at the Snell angle). The complete high-frequency
incoherent intensity, (8.6), with forward scatter at the Snell angle, so
that (5.29a), (5.30) apply, becomes specifically for these two-scale
surface models

MO 0, ansz = 60012 Plara) % [5Zo—

“6x° Gy
Hi-Freq
K2 551 + 8k%os% _W_(0,010) 1, (8.14)
01 oTs .
Snell

where by (7.56), Né?%nc > 16cosegT and aoT <m2. For 0,7 n/2, strong
shadowing becomes dominant for the facet term, so that its contribution
vanishes. The small-scale term likewise disappears (See [1], Sec 20, (2)
for conditions). From (8.7), it is seen that the coherent term always
vanishes at these high frequencies.

With bistatic ("forward") scatter at low frequencies (8.7), (8.9) apply.

At the Snell angle, we again have 2a0y = 20, =0, bo = 2coseoT, so that

" . oy
> specifically (ARS = 0)
B
- (0) (1) 22 o2 2 4. .2
5: My (o) 24 Ko(O)inRo s (ngR) A1[8kocos 807 Wg (0, 0/0)
N Low Freq
:: Snell k4 (0
N and
» (0) + oall) 2 42,2,2 2. .2
353 3(0) = 26° /K (0), R © S°ATk (g 95) cos®e _. (8.15b)
5 Low Freg o'"'in O 170 7T°R oT
'iﬁ Snell
Py
o
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As we see from (7.36),
W,(0,010) = J K,(&r,0)d(ar) = ntdo? , (8.16)

where n = 0(10°), and 2 is an (isotropic) correlation distance. (See
Section 3 for a d1scuss1on.)

8.5 Scatter Intensity of the Diffuse Diffraction Term (k=1)

Applying (7. 52) and (7. 52a) to each term of (7.16) in (7.15), where we
note that <Av( ) >R <Av G >R<p g )>R 0, since the gravity wave and
soliton components are postulated to be independent, we get directly,

with the help of (7.52a):
2
(1) = -‘z-.G
Mer (0l f ORTORTRgsz |JG|+ >3l dry
CG,CS,etCo
= (absolute) curvature of each surface (G,S),

(8.16a)

= 2
where IJG,S’ 'chxcyy'gxy|G,S

cf. (7.52). Removing the Rg Ei’from under the integral sign as before, and
using (7.3), (7.4) we get directly for (8.16a)

M l..) = B2 8% 1300) {1+ 0d, + 0B ) 1eQagl + 1Bl

-~ A
X 252 5271 (72 2
(979) Ry 5° 5 (egldal + ol gl (8.16b)

from (6.36), (6.40), (6.52): the fact that 13(0) = (ngR)ZAl/Z, and the fact
that OEX,Ggy <<]1 along with the statistical independence of g and (CGx’CGy)
for gaussian processes (at the same point in space-time).

Accordingly, from (7.15) the desired diffuse scatter intensity (k=1)

becomes

M(” o (0) = G“)K (O)in(ngR) -2- —§7{<; [ 9 |> +<g Ia |>}] (8.17)

with G(l) given.as before by (7.11a). As expected, these diffuse diffraction
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terms (8.17) are (1), independent of frequency, and (2) independent of
directionality: there is no focusing of the scattered energy or dependence
on the angles of incidence and viewing, as in the "classical” case (k=0).
The former property, (1), stems from the "quasi-optical" character
of the scattering regions around each stationary phase point on each sur-
face, while (2) is likewise a consequence of the fact that the local sur-
face has all possible slopes, considered over the ensemble of possible
stationary phase points, so that there is Bo dominant subset of #specular
points" at any given viewing angle (i.e., surface slope). This is quite
different from the high-frequency, specular-point or "speckle" situation
in the "classical" case (k=0), c¢f. (8.6), (8.10), (8.14), where only the
stationary phase-points with comparatively large local flat (i.e., tangent-
plane) areas (facets) are considered, sufficiently widely separated that
their reflected signals undergo large phase changes, and such that koo >>],
where o(= /TFIF;T ) is the effective radius of curvature (r,, r, being
the associated gaussian radii‘of curvature). Then it is possible to dis-
tinguish numbers of such facets at any specified angle (apart from very
small grazing angles where shadowing conceals the facets), from which a
resultant, directional incoherent radiation is observed,.[5). In our pres-
ent "quasi-optical: cases (k®1) we have kops 1, rather than koo >(>) 1
for k=0, and there is no preferred direction of scattering’(k=1). Direc-
tional scattering does, however, appear in the multiple-scatter terms (¥32),
in view of the directional character of the correlation function =
Rg;)kﬁi’tl;lé’tz)' cf. (7.53). See [41, II] for details. '

8.6 Extension to Include Explicit Capillary Waves

In our preceding wave'surface models, cf. Z7.4b). we have not ex-
plicitly distinguished the "capillary wave" component (zc) from the "gravity-
wave" component (;G) in the (single) continuous wave surface, Zg» gf. (7.3).
Although the so-called capillary term (when present) is small vis-a-vis
the gravity component and the separate, soliton ripples (cs). it cannot
be neglected at small grazing angles and high frequencies, where the
"geometrical acoustic" or specular-point scatter term itself becomes van-
ishingly small.

Using (7.3) for g we consider first:

>




IR L A A A A e

119

A. The Coherent Component (k=0)

Here we have now for (7.19) the following expression for the second-
moment function:

‘02" zik ~
(0) (A 0%0z%6 ; . . p
Mo’ (=] ...) = nz"l e (1 + 2ik g, 0gtg * 2ika +ic
G

0~0 c

2
K - . 2
- TO[[23°-L'G§;§ + (230:12)2;5 + )cccs] )>’ Aot
(8.18)

With cg, er bs taken to be statistically independent, wi.h ¢ +cc = %4

gaussian*, so that g Sax etc. are likewise statistically independent,
we see that (8.18) reduces to

2 2
k k 2
(0) : ; R _o .2,(0) o _2,(0)
Mpr (=le..) =tF (e gky)g 1230, * 57 0NGg“con * 7 OcNac-con *++-'| Ppr
(8.19)
where now
. 2,22
2ia,.k 4 - k%o
Flg=<e 2% =c.fof (rg) (B °209), cf. (7.26).  (8:199

The "tilt-factor" Né?Qoh is given by (7.22), (7.22a), (7.24). The

(1 - 1] (0) 3 $
tilt-factor” N._ [, is obtained from

0) . &.23 3 3
Neoaoh® <(_"z_) . (.‘.z'zﬁo)z>s = -(2,)". (8.20)

The other factors are give? as before: cf. (7.25) for ART' Thus, (7.23)
is extended now to '

2,22.2 2.(0) 2.2,(0)
2 -k b ctk o N.“l 4k o N -
Mé?)(,g.‘.) . (2“02)2 ARTirlg;Gi e ©090°SG-coh "0 c ccoh | g )

.
.. . )
B «
eVt
v e Ce ta
s o s 2"
S )

00
s vﬁ; ..053

P4

where we can drop the terms kgagNéo), kg;ENéo) (<< 1) in the exponent,

0
W
. &

*Note that :g‘ L. are not individually gaussian, strictly, since %
is certainly not gaussian. (However, in practice we may treat ‘g as an
approximately normal process, since te is small vs. ¢
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and F19 = FlG’ since OE = 02. Thus, for the coherent component of scat-
tering Mégg(o) is now given by (8.7), with the exponential term of (8.21),

which is practically replaced by exp(-bgkgoé), og 2 oé.

B. The Incoherent Component (k=0)

Our modification of the preceding results [Sec. 7.3B et seq.] starts
with (7.29). We employ the aforementioned technique of splitting the
wave-number spectrum, discussed in Sec. 2.1 above. We begin by rewriting
the exponent of (7.29) as

2,2 2 e 12125201 .5 -5 1. 2 p . 08 402 202
boko G(1 N DG) bokqu(1 °g 6c)’ ag * rc 6’ ag * 0c °6*
. (8.22)
where OG(O,O) = 1 is truly normalized, but 59 c(0,0)< 1. Further
rewriting gives
2,22 w22 200 v w20y,
bokooﬁ(l - °G) boko{og(l og) + oc(l 6c)},
52 52 (8.23)
Blz 26, bLT—2b_.
g ;29 TGl c
g c

Now 66, éé are properly normalized. Accordingly, we have for (7.29)

Za2(1-0g)1 = (exp [-bAZo2(1-62)1) (1 + k2bZol(167) + ..

2
= {a
FZG exp { boko oko’g

2,22 )
-bSkSof(1-5")
e 006749 + 0850 - Kken22
e Al 4ol - kibol + ...

C 02,2 244 s
- b ko (1-6')
. : 0o0g g 2,2 2,
- e {1+ kobocG

¢t

2

C<< 1, (8.24)

kgbgo
»
since the capillary component is very small, even at high frequencies:
k, = 83.78 rad-m™} (=20 kHz), cos B0° = 0.174, o = 0.5 mm. This gives
(kobocc)z = [(83.78)+2-0.174+ (5:10"%))? = 2.13-107 %<1, = 5.33 1073 at
100 kHz, etc.
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a~

The covariance functions 69, b, are specifically, from (2.3),

. k
2’\ (- -1.&'& ID -ik'Ar
o2 (ar,v) = [ W (klt" = ey ikear k(g5
&P glor ) I-.» (kit')e ) -+ g kjt')e (20) a)

OESC(A_Y,‘:T') = flwc(!g]r)e-i".*r (‘ff? = j: W, (k| )cos kear -glz- . (8.25b)
n D n

Equation (7.31) is now extended to

2.2 .24 - -
a.. ta_ +ta Ny 20 N, e 20
2 [_ox "oy ‘oz -1 = ~2 =0 2,22
Eq. (7.31) ( — )Fzg +<( - ) ( - )> bokeoghc
0z 21 /4 22 ¢'a

-'_-J“ 2 (0) '
i:i: + k NGS 1ncKS(ér’T ) » (8.26)
"-l:::
\:::'.
'; where Saxy and g, are independent (cf. remarks following (8.18a) above)
= and where N((ig)mc is given by (7.32), (7.33), (7.65), (7.66), and
2,22
-b%kcaf(1- ")
- 00’g
Fog = © (8.27)
. for the essentially gaussian "gravity-wave" component. [Since og = og
her‘e,aéé gando(OO)-I]
With (8.26) as the argument in { } of (7. 34a) we may proceed as in
'. = (7.35), to get now
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1°%% °2a 2. _r:l_Za
e« (B 2 0 0 (22 o2,
(8.28a)

At this point we proceed as in Section (8.1), using (8.25b) to write
finally the extended version of (8.6):

(brgZ0) | MO o(0) - 6k (0, 72 SPlarap)4,

"Hi-freq"
sz >>1
(| 2
2 (22..) (2 ..,)
0l 4l 42 '[“2 * H]
oX oy oz T e 2bo°%x 2bgoy
QOZ/Z b202 02
0 Gx Gy

0
7?' éc)1nc c(zao 0 |0);

4,(0) .
koNGS 1nc(0)ws(zﬁokolx’y|°)] » Og = og* (8.29)

The coherent component is given by (8.21) in (8.7) (witho_ = oG), for all

9

frequencies.
_bZkZ 2
2 , 2
3k 2a,.~b. (20; -b
3_ o [( o TR)x o TR)J]{] (8.30)
. @

Similarly, we find that the "low-frequency" version of (8.9) becomes

n‘°’x>(o)| = {1 (°)in3“ns(°‘ ) + B2 52,9002,
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0°0 2
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where ARS(QO) is given by (8.9a,b), etc.

We can now specialize (8.29)-(8.31) to the various scatter geometries,
as we may wish, e.g., "backscatter," forward scatter in the Snell direction,
etc. The results appear as the various cross-sections presented in Sections
2, 3 above. Finally, for the diffraction terms, cf. Sec. 8.5, the extensions
are directly made as given in Section 3.3.
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